Skip to main content

Advertisement

Log in

RWSF-BLP: a novel lncRNA-disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

An increasing number of studies and experiments have demonstrated that long noncoding RNAs (lncRNAs) have a massive impact on various biological processes. Predicting potential associations between lncRNAs and diseases not only can improve our understanding of the molecular mechanisms of human diseases but also can facilitate the identification of biomarkers for disease diagnosis, treatment, and prevention. However, identifying such associations through experiments is costly and demanding, thereby prompting researchers to develop computational methods to complement these experiments. In this paper, we constructed a novel model called RWSF-BLP (a novel lncRNA-disease association prediction model using Random Walk-based multi-Similarity Fusion and Bidirectional Label Propagation), which applies an efficient random walk-based multi-similarity fusion (RWSF) method to fuse different similarity matrices and utilizes bidirectional label propagation to predict potential lncRNA-disease associations. Leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold-CV) were implemented in the evaluation RWSF-BLP performance. Results showed that, RWSF-BLP has reliable AUCs of 0.9086 and 0.9115 ± 0.0044 under the framework of LOOCV and 5-fold-CV and outperformed other four canonical methods. Case studies on lung cancer and leukemia demonstrated that potential lncRNA-disease associations can be predicted through our method. Therefore, our method can accurately infer potential lncRNA-disease associations and may be a good choice in future biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17:734–749

    Google Scholar 

  • Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2010) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151

    PubMed  PubMed Central  Google Scholar 

  • Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 47:D1034–D1037

    CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 123:215–229

    Google Scholar 

  • Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2012) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Yan G-Y (2013) Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 29:2617–2624

    CAS  PubMed  Google Scholar 

  • Chen X (2016) KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep 5:16840

    Google Scholar 

  • Chen Shifeng W, Hong LN, Hongling W, Yushu W, Qianqing T, Huiyuan S, Chengming S (2016) BMC genomics. Biomed Pharmacother 82:583–588

    CAS  PubMed  Google Scholar 

  • Chen X (2015) Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 5:13186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yan CC, Zhang X, You Z-H (2017) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18:558–576

    CAS  PubMed  Google Scholar 

  • Chen X, Yang J-R, Guan N-N, Li J-Q (2018) GRMDA: graph regression for MiRNA-disease association prediction. Front Physiol 9:92

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lai D, Lan W, Wu X, Chen B, Chen YP, Wang J (2019) ILDMSF: inferring associations between long non-coding RNA and disease based on multi-similarity fusion. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2019.2936476

    Article  PubMed  Google Scholar 

  • Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220:449–455

    CAS  PubMed  Google Scholar 

  • Cui D, Yu C-H, Liu M, Xia Q-Q, Zhang Y-F, Jiang W-L (2016) Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumor Biol 37:4127–4134

    CAS  Google Scholar 

  • Cui T, Zhang L, Huang Y, Yi Y, Tan P, Zhao Y, Hu Y, Xu L, Li E, Wang D (2018) MNDR v2.0: an updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res 46:D371–D374

    CAS  PubMed  Google Scholar 

  • Detterbeck FC, Boffa DJ, Kim AW (2017) The eighth edition lung cancer stage classification. Chest 151:193–203

    PubMed  Google Scholar 

  • Dieter C, Lourenco ED, Lemos NE (2020) Association of long non-coding RNA and leukemia: a systematic review. Gene 735:144405

    CAS  PubMed  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2008) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37:D122–D126

    PubMed  PubMed Central  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861

    CAS  PubMed  Google Scholar 

  • Lan W, Li M, Zhao K, Liu J, Wu F-X, Pan Y, Wang J (2016) LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 33:458–460

    Google Scholar 

  • Fu G, Wang J, Domeniconi C, Yu G (2018) Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics 34:1529–1537

    CAS  PubMed  Google Scholar 

  • Ferrando AA, López-Otín C (2019) Clonal evolution in leukemia. Nucleic Acids Res 47:D1034–D1037

    Google Scholar 

  • Gao S, Zhou B, Li H, Huang X, Wu Y, Xing C, Yu X, Ji Y (2018) Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol 67:32–40

    CAS  PubMed  Google Scholar 

  • Garitano-Trojaola A (2018) Deregulation of linc-PINT in acute lymphoblastic leukemia is implicated in abnormal proliferation of leukemic cells. Oncotarget 9:12842

    PubMed  PubMed Central  Google Scholar 

  • Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics. CA Cancer J Clin 50:7–33

    CAS  PubMed  Google Scholar 

  • Guan N-N, Wang C-C, Zhang L, Huang L, Li J-Q, Piao X (2020) In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion. J Cell Mol Med 24:573–587

    CAS  PubMed  Google Scholar 

  • Guo ZH, You ZH, Wang YB, Yi HC, Chen ZH (2019) A learning-based method for lncRNA-disease association identification combing similarity information and rotation forest. iScience 19:786–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yuan K, Tang M, Yue J, Bao L, Wu S, Zhang Y, Li Y, Wang Y, Ou X et al (2020) Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. J Cell Mol Med. https://doi.org/10.1111/jcmm.16237

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y-A, Chen X, You Z-H, Huang D-S, Chan KCC (2016a) ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7:25902

    PubMed  PubMed Central  Google Scholar 

  • Huang C, Liu S, Wang H, Zhang Z, Yang Q, Gao F (2016b) LncRNA PVT1 overexpression is a poor prognostic biomarker and regulates migration and invasion in small cell lung cancer. Am J Transl Res 8:5025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genom 8:39

    Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Lan W, Li M, Zhao K, Liu J, Wu F-X, Pan Y, Wang J (2016) LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 33:458–460

    Google Scholar 

  • Lan W, Lai D, Chen Q, Wu X, Chen B, Liu J, Wang J, Chen Y-PP (2020) LDICDL: LncRNA-disease association identification based on collaborative deep learning. IEEE/ACM Trans Comput Biol Bioinform 14:1–1

    Google Scholar 

  • Lei L, Xia S, Liu D, Li X, Feng J, Zhu Y, Hu J, Xia L, Guo L, Chen F et al (2018) Genome-wide characterization of lncRNAs in acute myeloid leukemia. Brief Bioinform 19:627–635

    CAS  PubMed  Google Scholar 

  • Li W, Huang K, Wen F, Cui G, Guo H, Zhao S (2017) Genetic variation of lncRNA GAS5 contributes to the development of lung cancer. Oncotarget 8:91025

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Li J, Bian N (2019) DNILMF-LDA: prediction of lncRNA-disease associations by dual-network integrated logistic matrix factorization and Bayesian optimization. Genes 10:608

    CAS  PubMed Central  Google Scholar 

  • Liu H, Ren G, Chen H, Liu Q, Yang Y, Zhao Q (2020) Predicting lncRNA-miRNA interactions based on logistic matrix factorization with neighborhood regularized. Knowl Based Syst 8191:105261

    Google Scholar 

  • Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM, Gnad F, Guan Y, Gilbert HN, Stinson J (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 22:2315–2327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Yang M, Luo F, Wu F-X, Li M, Pan Y, Li Y, Wang J (2018) Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34:3357–3364

    CAS  PubMed  Google Scholar 

  • Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5:211–220

    CAS  PubMed  Google Scholar 

  • Omer A, Singh P, Yadav NK, Singh RK (2015) MicroRNAs: role in leukemia and their computational perspective. Wiley Interdiscip Rev RNA 6:65–78

    CAS  PubMed  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M et al (2006) ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res f35:D747–D750

    Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10:e0118432

    PubMed  PubMed Central  Google Scholar 

  • Spiess PE, Dhillon J, Baumgarten AS, Johnstone PA (2016) Pathophysiological basis of human papillomavirus in penile cancer: key to prevention and delivery of more effective therapies. CA Cancer J Clin 66:481–495

    PubMed  Google Scholar 

  • Sumathipala M, Maiorino E, Weiss ST, Sharma A (2019) Network diffusion approach to predict lncRNA disease associations using multi-type biological networks: LION. Front Physiol 10:888

    PubMed  PubMed Central  Google Scholar 

  • Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, Hao D, Liu S, Zhou M (2014) Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol Biosyst 10:2074–2081

    CAS  PubMed  Google Scholar 

  • Zhao T, Xu J, Liu L, Bai J, Xu C, Xiao Y, Li X, Zhang L (2014) Identification of cancer-related lncRNAs through integrating genome regulome and transcriptome features. Mol BioSyst 11:126–136

    PubMed  Google Scholar 

  • van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 10:3036–3043

    Google Scholar 

  • Verhaegh GW, Verkleij L, Vermeulen SHHM, den Heijer M, Witjes JA, Kiemeney LA (2008) Polymorphisms in the H19 gene and the risk of bladder cancer. Eur Urol 54:1118–1126

    CAS  PubMed  Google Scholar 

  • Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650

    CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Li H, Feng X, Yuan D, Yang J (2019) A bidirectional label propagation based computational model for potential microbe-disease association prediction. Front Microbiol 27:684

    Google Scholar 

  • Wang Y, Yu G, Wang J, Fu G, Guo M, Domeniconi C (2020) Weighted matrix factorization on multi-relational data for LncRNA-disease association prediction. Methods 173:32–43

    CAS  PubMed  Google Scholar 

  • Wen F, Cao Y-X, Luo Z-Y, Liao P, Lu Z-W (2018) LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophysl Res Commun 507:1–8

    Google Scholar 

  • White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA (2014) Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol 15:429

    PubMed  PubMed Central  Google Scholar 

  • Xie G, Huang S, Luo Yu, Ma L, Lin Z, Sun Y (2019) LLCLPLDA: a novel model for predicting lncRNA-disease associations. Mol Genet Genom 294:1477–1486

    CAS  Google Scholar 

  • Yao H, Duan M, Lin L, Wu C, Fu X, Wang H, Guo L, Chen W, Huang L, Liu D et al (2017) TET2 and MEG3 promoter methylation is associated with acute myeloid leukemia in a Hainan population. Oncotarget 8:18337

    PubMed  PubMed Central  Google Scholar 

  • Yao D, Zhan X, Zhan X, Kwoh CK, Li P, Wang J (2020) A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinform 21:1–18

    Google Scholar 

  • Yang D, Zhang X, Zhang X, Xu Y (2017) The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol 96:1965–1982

    CAS  PubMed  Google Scholar 

  • Yu F, Zheng J, Mao Y, Dong P, Li G, Lu Z, Guo C, Liu Z, Fan X (2015) Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis. Biochem Biophys Res Commun 463:679–685

    CAS  PubMed  Google Scholar 

  • Yu J, Xuan Z, Feng X, Zou Q, Wang L (2019) A novel collaborative filtering model for LncRNA-disease association prediction based on the Native Bayesian classifier. BMC Bioinform 20:396

    Google Scholar 

  • Zeng M, Lu C, Zhang F, Li Y, Wu F-X, Li Y, Li M (2020) SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning. Methods 179:73–80

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metabol 88:5119–5126

    CAS  Google Scholar 

  • Zhang H, Liang Y, Peng C, Han S, Du W, Li Y (2019) Long noncoding RNA and protein interactions: from experimental results to computational models based on network methods. Math Biosci 20:1284

    CAS  Google Scholar 

  • Zhang Y, Chen M, Li A, Cheng X, Jin H, Liu Y (2020a) LDAI-ISPS: LncRNA-disease associations inference based on integrated space projection scores. Int J Mol Sci 21:4

    Google Scholar 

  • Zhang Y, Ye F, Xiong D, Gao X (2020b) LDNFSGB: prediction of long non-coding rna and disease association using network feature similarity and gradient boosting. BMC Bioinform 21:1–27

    Google Scholar 

  • Zhu Z, Song L, He J, Sun Y, Liu X, Zou X (2015) Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. BMC Genom 8:10082

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (62002070, 618002072), the Natural Science Foundation of Guangdong Province (2018A030313389), the Science and Technology Plan Project of Guangdong Province (2019B010139002, 2018B030323026, 2017A040405050, 2016B030306004), and the Science and Technology Program of Guangzhou (201902020006, 201902020012, 201907010021).Yuping Sun is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Huang, B., Sun, Y. et al. RWSF-BLP: a novel lncRNA-disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation. Mol Genet Genomics 296, 473–483 (2021). https://doi.org/10.1007/s00438-021-01764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01764-3

Keywords

Navigation