Skip to main content
Log in

Abstract

This review addresses the biophysical mechanisms of image formation in electrosensory systems. These electrical images are used for navigation and object detection by many species of fish, some amphibians, and some mammals. In the active electrosensory systems of fish these images are formed by the fish’s own electric organ discharge. In the passive electrosensory systems of fish, amphibians and mammals the images are formed by external electrical sources. In this review we describe the biophysics of image formation, the effects of the organism’s passive electrical properties, the role of exploration, and the influence of context on electroreception. We suggest that the basic principles established in these specialized systems be useful for understanding other more common sensory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, P.A., Caputi, A.A. 2003. Electroreception in G. carapo: Detection of changes in waveform of the electrosensory signals. Journal of Experimental Biology 206, 989–998.

    Article  PubMed  Google Scholar 

  2. Bacelo, J. 2007. Sensory processing in the Electrosensory lobe of the weakly electric fish. Gnathonemus petersii These de Doctorat de l’Universite Paris 6 Pierre et Marie Curie.

  3. Bacelo, J., Engelmann, J., Hollmann, M., von der Emde, G., Grant, K. 2008. Functional foveae in an electrosensory system. The Journal of Comparative Neurology 511, 342–359.

    Article  PubMed  Google Scholar 

  4. Baillet-Derbin, C. 1988. Motoneuron organization in the spinal cord of three teleost fishes, Gymnotus carapo (Gymnotidae), Gnathonemus petersii (Mormyridae) and Salmo trutta (Salmonidae). Biol Struct and Morphogenesis 1, 160–170.

    Google Scholar 

  5. Bastian, J. 1977. Variations in the frequency response of electroreceptors dependent on receptors location in weakly electric fish (Gymnotidei) with a pulse discharge. Journal of Comparative Physiology A 121, 53–64.

    Article  Google Scholar 

  6. Bastian, J. 1995. Pyramidal-cell plasticity in weakly electric fish: A mechanism for attenuating responses to reafferent electrosensory inputs. Journal of Comparative Physiology A 176, 63–78.

    Article  CAS  Google Scholar 

  7. Bastian, J., Chacron, M., Maler, L. 2004. Plastic and non-plastic pyramidal cells perform unique roles in a network capable of adaptative redundancy reduction. Neuron 41, 767–779.

    Article  CAS  PubMed  Google Scholar 

  8. Bell, C.C., Caputi, A.A., Grant, K., Serrier, J. 1993. Storage of a sensory image in the electric lobe of Gnathonemus petersii. Proceedings of the National Academy of Sciences of the United States of America, 90, 4650–4654.

    Article  CAS  PubMed  Google Scholar 

  9. Bell, C.C., Caputi, A., Grant, K. 1997. Physiology and plasticity of morphologically identified cells in the Mormyrid electrosensory lobe. Journal of Neuroscience 17, 6409–6423.

    CAS  PubMed  Google Scholar 

  10. Bennett, M.V.L. 1970. Comparative physiology: electric organs. Annual Review of Physiology 32, 471–528.

    Article  CAS  PubMed  Google Scholar 

  11. Bodznick, D., Montgomery, J.C. 1994. The physiology of low-frequency electrosensory systems. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (Eds.), Electroreception, Springer, New York, 132–153.

    Google Scholar 

  12. Brown, M.C., Santos-Sacchi, J. 2008. Audition. In: Squire, L., Berg, D., Bloom, F., du Lac, S., Ghosh, A., and Spitzer, N. (Eds.), Fundamental Neuroscience. Academic Press, Canada, 609–636.

    Google Scholar 

  13. Budelli, R., Caputi, A.A. 2000. The electric image in weakly electric fish: Perception of objects of complex impedance. Journal of Experimental Biology 203, 481–492.

    CAS  PubMed  Google Scholar 

  14. Budelli, R., Caputi, A.A., Gómez, L., Rother, D., Grant, K. 2002. The electric image in Gnathonemus petersii. Journal of Physiology (Paris) 96, 421–442.

    Article  CAS  Google Scholar 

  15. Caputi, A.A. 1999. The EOD of pulse gymnotiforms: The transformation of a simple impulse into a complex spatio-temporal electromotor pattern. Journal of Experimental Biology 202, 1229–1241.

    PubMed  Google Scholar 

  16. Caputi, A.A. 2004. Contributions of electric fish to the understanding of reafferent sensory systems. Journal of Physiology (Paris) 98, 81–97.

    Article  Google Scholar 

  17. Caputi, A., Budelli, R. 1995. The electric image in weakly electric fish: I. A data-based model of waveform generation in Gymnotus carapo. Journal of Computational Neuroscience 2, 131–147.

    Article  CAS  PubMed  Google Scholar 

  18. Caputi, A.A., Budelli, R. 2006. Peripheral electric imaging in freshwater electric fish. Journal of Comparative Physiology 192, 587–600.

    Article  CAS  PubMed  Google Scholar 

  19. Caputi, A., Macadar, O., Trujillo-Cenóz, O. 1989. Waveform generation in Gymnotus carapo. III. Analysis of the fish body as an electric source. Journal of Comparative Physiology A 165, 361–370.

    Article  Google Scholar 

  20. Caputi, A.A., Budelli, R., Grant, C., Bell, C.C. 1998. The electric image in weakly electric fish. Physical images of resistive objects in Gnathonemus petersii. Journal of Experimental Biology 201, 2115–2128.

    CAS  PubMed  Google Scholar 

  21. Caputi, A.A., Castelló, M.E., Aguilera, P., Trujillo-Cenoz, O. 2002. Peripheral aspects of electrolocation and electrocommunication in Gymnotus carapo. Journal of Physiology (Paris) 96, 493–505.

    Article  Google Scholar 

  22. Caputi, A.A., Aguilera, P.A., Castelló, M.E. 2003. Probability and amplitude of the novelty response as a function of the change in contrast of the reafferent in Gymnotus carapo. Journal of Experimental Biology 206, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  23. Caputi, A.A., Castelló, M.E., Aguilera, P.A., Pereira, A.C., Nogueira, J., Rodríguez-Cattaneo, A., Lezcano, C. 2008. Active electroreception in Gymnotus omari: Imaging, object discrimination, and early processing of actively generated signals. Journal of Physiology (Paris) 102, 256–271.

    Article  Google Scholar 

  24. Carlson, B.A, Hopkins, C.D. 2004. Stereotyped temporal patterns in electrical communication. Animal Behaviour 68, 867–878.

    Article  Google Scholar 

  25. Castelló, M., Caputi, A., Trujillo-Cenóz, O. 1998. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo. Journal of Comparative Neurology 401, 549–563.

    Article  PubMed  Google Scholar 

  26. Castelló, M.E., Aguilera, P.A., Trujillo-Cenóz, O., Caputi, A.A. 2000. Electroreception in Gymnotus carapo: Pre-receptor processing and the distribution of electroreceptor types. Journal of Experimental Biology 203, 3279–3287.

    PubMed  Google Scholar 

  27. Chittka, L., Brockmann, A. 2005. Perception space — The final frontier. PloS Biology 3, e137.

    Article  PubMed  Google Scholar 

  28. Engelmann, J., Nöbel, S., Röver, T., von der Emde, G. 2009. The Schnauzenorgan-response of Gnathonemus petersii. Frontiers in Zoology 6, 21.

    Article  PubMed  Google Scholar 

  29. Feng, A.S. 1977. The role of the electrosensory system in postural control of the weakly electric fish Eigenmannia virescens. Journal of Neurobiology 8, 429–437.

    Article  CAS  PubMed  Google Scholar 

  30. Fessard, A., Szabo, T. 1961. Mise en evidence d’un récepteur sensible à l’électricité dans la peau d’un mormyre. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Paris 253, 1859–1860.

    Google Scholar 

  31. Fulton, J.F. (Ed.) 1946. Howell’s Textbook of Physiology, 15 ed. W. B. Saunders Company, Philadelphia, 305–333.

    Google Scholar 

  32. Gibson, J.J. 1966. The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston.

    Google Scholar 

  33. Graff, C., Kaminski, G., Gresty, M., Ohlmann, T. 2004. Fish perform spatial pattern recognition and abstraction by exclusive use of active electrolocation. Current Biology 14, 818–823.

    Article  CAS  PubMed  Google Scholar 

  34. Heiligenberg, W. 1974. Electrolocation and jamming avoidance in a Hypopygus (Rhamphichthyidae, Gymnotoidei), an electric fish with pulse-type discharges. Journal of Comparative Physiology 91, 223–240.

    Article  Google Scholar 

  35. Hopkins, C.D. 2005. Passive electrolocation and the sensory guidance of oriented behavior. In: Bullock, T.H., Hopkins, C.D., Popper, A.N. and Fay, R.R. (Eds.), Electroreception. Springer, New York, 264–289.

    Chapter  Google Scholar 

  36. Kalmijn, A.J. 1974. The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard, A. (Ed.), Handbook of Sensory Physiology, vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. Springer-Verlag, Berlin, 147–200.

    Google Scholar 

  37. Lissmann, H.W. 1958. On the function and evolution of electric organs in fish. Journal of Experimental Biology 35, 156–191.

    Google Scholar 

  38. Lissmann, H.W., Machin, K.E. 1958. The mechanism of object location in Gymnarchus niloticus and similar fish. Journal of Experimental Biology 35, 451–486.

    Google Scholar 

  39. Machin, K.E., Lissmann, H.W. 1960. The mode of operation of the electric receptors in Gymnarchus niloticus. Journal of Experimental Biology 37, 801–811.

    Google Scholar 

  40. Mc Gregor, P.K., Westby, G.W.M. 1992. Discrimination of individually characteristic electric organ discharges by a weakly electric fish. Animal Behaviors 43, 977–986.

    Article  Google Scholar 

  41. Meyer, J.H. 1982. Behavioral responses of weakly electric fish to complex impedances. Journal of Comparative Physiology A 145, 459–470.

    Article  Google Scholar 

  42. Meyer, D.L., Heiligenberg, W., Bullock, T.H. 1976. The ventral substrate response. A new postural control mechanism in fishes. Journal of Comparative Physiology A 109, 59–68.

    Article  Google Scholar 

  43. Migliaro, A., Caputi, A., Budelli, R. 2005. Theoretical analysis of pre-receptor image conditioning in weakly electric fish. PLoS Computational Biology 1, e16.

    Article  Google Scholar 

  44. Mohr, C., Roberts, P.D., Bell, C.C. 2003. The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli. Journal of Neurophysiology 90, 1193–1210.

    Article  PubMed  Google Scholar 

  45. Nelson, M.E. 2005. Target detection, image analysis and modeling. In: Bullock, T.H., Hopkins, C.D., Popper, A.N. and Fay, R.R. (Eds.), Electroreception. Springer, New York, 297–310.

    Google Scholar 

  46. Nelson, M.E., MacIver, M.A. 1999. Prey capture in the weakly electric fish Apteronotus albifrons: Sensory acquisition strategies and electrosensory consequences. Journal of Experimental Biology 202, 1195–1203.

    CAS  PubMed  Google Scholar 

  47. Nunez, P. 1981. Electric fields of the brain. In: The Neurophysics of EEG. Oxford University Press, New York.

    Google Scholar 

  48. Pereira, A.C. 2009. Alcance espacial y efectos de contexto en el sentido eléctrico activo de Gymnotus omari. Master thesis, UDELAR, Montevideo.

    Google Scholar 

  49. Pereira, A.C., Centurion, V., Caputi, A.A. 2005. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. Journal of Experimental Biology 208, 961–972.

    Article  PubMed  Google Scholar 

  50. Post, N., von der Emde, G. 1999. The ‘novelty response’ in an electric fish: Response properties and habituation. Physiology & Behavior 68, 115–128.

    Article  CAS  Google Scholar 

  51. Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nobel, S., Grant, K., Engelmann, J. 2008. Active sensing in a mormyrid fish: Electric images and peripheral modifications of the signal carrier give evidence of dual foveation. Journal of Experimental Biology 211, 921–934.

    Article  PubMed  Google Scholar 

  52. Rasnow, B. 1996. The effects of simple objects on the electric field of Apteronotus. Journal of Comparative Physiology A 178, 397–411.

    Google Scholar 

  53. Reid, R.C., Usrey, W.M. 2008. Vision. In: Squire, L., Berg, D., Bloom, F., du Lac, S., Ghosh, A. and Spitzer, N. (Eds.), Fundamental Neuroscience. Academic Press, Canada, 637–659.

    Google Scholar 

  54. Rodríguez-Cattáneo, A., Pereira, A.C., Aguilera, P.A., Crampton, W., Caputi, A.A. 2008. Species-specific diversity of a fixed motor pattern: The electric organ discharge of Gymnotus. PLoS ONE 3(5), e2038.

    Article  PubMed  Google Scholar 

  55. Rother, D., Migliaro, A., Canetti, R, Gomez, L., Caputi, A., Budelli, R. 2003. Electric images of two low resistance objects in weakly electric fish. Biosystems 71, 169–177.

    Article  PubMed  Google Scholar 

  56. Scheich, H., Bullock, T.H. 1974. The detection of electric fields from electric organs. In: Fessard, A. (Ed.), Handbook of Sensory Physiology. Springer-Verlag, Berlin, 201–257.

    Google Scholar 

  57. Schwarz, S., von der Emde, G. 2001. Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii. Journal of Comparative Physiology A 186, 1185–1197.

    Article  CAS  Google Scholar 

  58. Sears, F. W., Zemanski, M.W. 1954. Física General. Aguilar, Madrid.

    Google Scholar 

  59. Sicardi, A., Caputi, A., Budelli, R. 2000. Physical basis of electroreception. Physica A 286, 86–93.

    Article  Google Scholar 

  60. Silva, A., Quintana, L., Perrone, R., Sierra, F. 2008. Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. Journal of Physiology (Paris) 102, 272–278.

    Article  Google Scholar 

  61. Sperry, R.W. 1950. Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative Physiology and Psychology 43, 482–489.

    Article  CAS  Google Scholar 

  62. Trujillo-Cenóz, O., Bertolotto, C. 1988. Some aspects of the structural organization of the spinal-cord of Gymnotus carapo (Teleostei, Gymnotiformes). II. The motoneurons. Journal of ultrastructure and molecular structure research 101, 224–235.

    Article  Google Scholar 

  63. Trujillo-Cenóz, O., Echague, J.A. 1989. Waveform generation of the electric organ discharge in Gymnotus carapo. I. Morphology and innervation of the electric organ. Journal of Comparative Physiology A 165, 343–351.

    Article  Google Scholar 

  64. von der Emde, G. 1990. Discrimination of objects through electrolocation in the weakly electric fish Gnathonemus petersii. Journal of Comparative Physiology A 167, 413–421.

    Google Scholar 

  65. von der Emde, G., Bell, C.C. 1994. Responses of cells in the mormyrid electrosensory lobe to EODs with distorted waveforms: Implication for capacitance detection. Journal of Comparative Physiology A 175, 83–93.

    Google Scholar 

  66. von der Emde, G., Schwarz, S., Gomez, L., Budelli, R., Grant, K. 1998. Electric fish measure distance in the dark. Nature 395, 890–894.

    Google Scholar 

  67. von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M., Metzen, M., Pusch, R. 2008. Active electrolocation in Gnathonemus petersii: Behavior, sensory performance and receptor systems. Journal of Physiology (Paris) 102, 279–290.

    Article  Google Scholar 

  68. von Holst, E., Mittelstaed, H. 1950. The reafferece principle. Naturwissenchaften 37, 464–476.

    Article  Google Scholar 

  69. Watson, D., Bastian, J. 1979. Frequency response characteristics of the electroreceptors in the weakly electric fish, Gymnotus carapo. Journal of Comparative Physiology 134, 191–202.

    Article  Google Scholar 

  70. Zellick, R., von der Emde, G. 1995. Behavioral detection of electric signal waveform distortion in the weakly electric fish Gnathonemus petersii. Journal of Comparative Physiology A 177, 493–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Ariel Caputi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A.C., Caputi, A.A. Imaging in electrosensory systems. Interdiscip Sci Comput Life Sci 2, 291–307 (2010). https://doi.org/10.1007/s12539-010-0049-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-010-0049-2

Key words

Navigation