Skip to main content
Log in

A Multivariate Geomorphometric Approach to Prioritize Drought Prone Sakri Basin for Land and Water Resource Management

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil and water resource management is a serious concern in respect of climate variability to increase soil moisture and fulfil the need of living population and flora and fauna. In the context of basin, prioritization of sub-watershed has gained significance in the natural resource management. The study prioritized the sub-watershed of the Sakri basin using a multivariate geomorphometric approach. The basin resulted in the formation of 11 sub-watersheds. Measurement of basic and derived morphometric parameter was considered, and 17 parameters have been taken for ranking and priority of sub-watershed. The morphometric analysis and principal component analysis (PCA) approaches were employed for ranking and prioritization of sub-watershed, based on high correlated parameters. Based on the results of morphometric analysis and PCA, sub-watersheds were categorized in high, medium and low priority. Among a total of 11 sub-watersheds, sub-watershed (SW) 3, 5, 6, 8 and 9 falling under high priority, which accounting to 46.82% of the basin. The high priority sub-watershed is at a higher risk of erosion which needs instantaneous soil and water conservation measures for betterment of basin morphometry and minimizes drought conditions. Results of the two approaches show that morphometric-based prioritization is more reliable and better in decision making for soil and water conservation planning at the sub-watershed level. Overall, these results are highly relevant in planning and developing of suitable soil and water conservation structures for mitigation and prevention in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data generated or analysed during this study are available from the corresponding author on reasonable request.

References

  • Arefin, R., Mohir, M. M. I., & Alam, J. (2020). Watershed prioritization for soil and water conservation aspect using GIS and remote sensing: PCA-based approach at northern elevated tract Bangladesh. Applied Water Science, 10, 91. https://doi.org/10.1007/s13201-020-1176-5

    Article  Google Scholar 

  • Bharath, A., Kumar, K. K., Maddamsetty, R., Manjunatha, M., Tangadagi, R. B., & Preethi, S. (2021). Drainage morphometry based sub-watershed prioritization of Kalinadi basin using geospatial technology. Environmental Challenges, 5, 100277. https://doi.org/10.1016/j.envc.2021.100277

    Article  Google Scholar 

  • Bharath, A., Maddamsetty, R., & Pawar, U. (2023). Evaluation of the geomorphological scenario of Shimsha River Basin, Karnataka, India. Water Science and Technology, 87(8), 1907–1924. https://doi.org/10.2166/wst.2023.105

    Article  Google Scholar 

  • Bhatt, S. C., Mishra, S., Singh, R., & Bhatt, S. (2021). Morphometric analysis of Rohni Watershed, Upper Betwa Basin, Bundelkhand Region, Central India. In A. K. Shandilya, V. K. Singh, S. C. Bhatt, & C. S. Dubey (Eds.), Geological and geo-environmental processes on earth. Springer natural hazards. Singapore: Springer.

    Google Scholar 

  • Biswas, A., Das Majumdar, D., & Banerjee, S. (2014). Morphometry governs the dynamics of a drainage basin: analysis and implications. Geography Journal, 2014, 1–14. https://doi.org/10.1155/2014/927176

    Article  Google Scholar 

  • Census of India. (2011). Number of villages, towns, households, population and area (India, states/UTs, districts and sub-districts)—2011. Office of the Registrar General and Censu Comissioner. Ministry of Home Affairs, Govt. of India.

  • CGWB. (2013). Ground water information booklet. Central Ground water Board, Ministry of Water Resources, Govt. of India, Mid-Eastern Region, Patna.

  • CGWB. (2021). Ground water year book, Bihar (2020–2021), Mid-eastern region, Patna. Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti. Govt. of India.

  • Chandniha, S. K., & Kansal, M. L. (2017). Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India. Appl Water Sci., 7, 329–338. https://doi.org/10.1007/s13201-014-0248-9

    Article  Google Scholar 

  • Chatrsimab, Z., Ghavimi Panah, M. H., Vafaeinejad, A. R., Hazbavi, Z., & Boloori, S. (2019). Prioritizing of the sub-watersheds using the soil loss cost approach (a case study; Selj-Anbar Watershed, Iran). ECOPERSIA, 7(3), 161–168.

    Google Scholar 

  • Deshmukh, D. S., Chaube, U. C., Tignath, S., & Tripathi, S. K. (2010). Morphological analysis of Sher river basin using GIS for identification of erosion-prone areas. Ecohydrology & Hydrobiology, 10(2–4), 307–313. https://doi.org/10.2478/v10104-011-0025-4

    Article  Google Scholar 

  • Elhaik, E. (2022). Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12, 14683. https://doi.org/10.1038/s41598-022-14395-4

    Article  CAS  Google Scholar 

  • Faniran, A. (1968). The index of drainage intensity—A provisional new drainage factor. Australian Journal of Science, 31, 328–330.

    Google Scholar 

  • Farhan, Y., & Anaba, O. (2016). A remote sensing and GIS approach for prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) based on morphometric and Soil erosion susceptibility analysis. Journal of Geographic Information System, 8(1), 1–19. https://doi.org/10.4236/jgis.2016.81001

    Article  Google Scholar 

  • Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 8(1), 113–148. https://doi.org/10.4236/as.2017.81009

    Article  Google Scholar 

  • Fernandez, P., Delgado, E., Lopez-Alonso, M., & Poyatos, J. M. (2018). GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration. Science of the Total Environment, 613–614, 1154–1164. https://doi.org/10.1016/j.scitotenv.2017.09.190

    Article  CAS  Google Scholar 

  • Godif, G., & Manjunatha, B. R. (2022). Prioritizing sub-watersheds for soil and water conservation via morphometric analysis and the weighted sum approach: a case study of the Geba river basin in Tigray, Ethiopia. Heliyon, 8(12), e12261. https://doi.org/10.1016/j.heliyon.2022.e12261

    Article  Google Scholar 

  • Gunjan, P., Mishra, S. K., Lohani, A. K., & Chandniha, S. K. (2020). The study of morphological characteristics for best management practices over the Rampur watershed of Mahanadi River Basin using prioritization. Journal of the Indian Society of Remote Sensing, 48, 35–45. https://doi.org/10.1007/s12524-019-01061-y

    Article  Google Scholar 

  • Hasan, M. S. U., Rai, A. K., Ahmad, Z., Alfaisal, F. M., Khan, M. A., Alam, S., & Sahana, M. (2022). Hydrometeorological consequences on the water balance in the Ganga river system under changing climatic conditions using land surface model. Journal of King Saud University-Science, 34(5), 102065. https://doi.org/10.1016/j.jksus.2022.102065

    Article  Google Scholar 

  • Hc, H., Srikanth, L., & Surendra, H. J. (2021). Prioritization of sub-watersheds of the Kanakapura Watershed in the Arkavathi River Basin, Karnataka, India-using remote sensing and GIS. Geology, Ecology, and Landscapes, 5(2), 149–160. https://doi.org/10.1080/24749508.2020.1846841

    Article  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350–361.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydro physical approach to quantitative morphology. Geological Society of America Bulletin, 56(2), 275–370.

    Article  Google Scholar 

  • ISRO. (2016). Desertification and Land Degradation Atlas of India (Based on IRS AWiFS data of 2011–13 and 2003–05). Space Applications Centre, ISRO, Ahmedabad, India (pp. 1–219).

  • Javed, A., Khanday, M. Y., & Ahmed, R. (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 37, 261–274. https://doi.org/10.1007/s12524-009-0016-8

    Article  Google Scholar 

  • Jeet, P., Singh, D. K., & Sarangi, A. (2019). Development of a composite hydrologic index for semi-arid region of India. Groundwater, 57(5), 749–755. https://doi.org/10.1111/gwat.12867

    Article  CAS  Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  • Kanhaiya, S., Singh, S., Singh, C. K., Srivastava, V. K., & Patra, A. (2019). Geomorphic evolution of the dongar river basin, son valley, central India. Geology, Ecology, and Landscapes, 3(4), 269–281. https://doi.org/10.1080/24749508.2018.1558019

    Article  Google Scholar 

  • Kar, S. K., Thomas, T., Singh, R. M., & Patel, L. (2018). Integrated assessment of drought vulnerability using indicators for Dhasan basin in Bundelkhand region, Madhya Pradesh, India. Current Science, 115(2), 338–346.

    Article  Google Scholar 

  • Kumar, A., Singh, S., Pramanik, M., Chaudhary, S., Maurya, A. K., & Kumar, M. (2022). Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach. Environment, Development and Sustainability, 24, 3723–3761. https://doi.org/10.1007/s10668-021-01586-8

    Article  Google Scholar 

  • Kumari, A., Tiwary, P., Upadhyaya, A., & Jeet, P. (2023a). Morphometric analysis using geospatial techniques to infer hydrologic behaviour of Waghadi Watershed, Maharashtra, India. Indian Journal of Ecology, 50(2), 532–538. https://doi.org/10.55362/IJE/2023/3931

    Article  Google Scholar 

  • Kumari, A., Upadhyaya, A., Jeet, P., Ahmed, A., Prakash, V., & Suna, T. (2023b). Morphometric analysis and prioritization of watershed for water management using weighted sum approach and geospatial tools: A case study of Harohar sub-basin, India. Journal of the Geological Society of India, 99, 859–867. https://doi.org/10.1007/s12594-022-2393-y

    Article  CAS  Google Scholar 

  • Lakshminarayana, S. V., Singh, P. K., Patil, P. R., & Jain, A. (2022). Determination of morphological parameters of Tidi watershed using remote sensing and geographic information system approaches. Water Science & Technology, 22(4), 3756–3768. https://doi.org/10.2166/ws.2022.014

    Article  Google Scholar 

  • Mahala, A. (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10, 33. https://doi.org/10.1007/s13201-019-1118-2

    Article  Google Scholar 

  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7, 1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Vol. 3). Columbia University.

    Google Scholar 

  • Ministry of Jal Shakti. (2023). Barrage project on Sakri river. Department of Water Resources, River Development & Ganga Rejuvenation. Govt. of India.

  • Ojha, S., Puri, L., Bist, S. P., Bastola, A. P., & Acharya, B. (2023). Watershed prioritization of Kailali district through morphometric parameters and landuse/landcover datasets using GIS. Heliyon, 9(6), e16489. https://doi.org/10.1016/j.heliyon.2023.e16489

    Article  Google Scholar 

  • Prabhakaran, A., & Jawahar Raj, N. (2018). Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied Water Science, 8, 31. https://doi.org/10.1007/s13201-018-0646-5

    Article  Google Scholar 

  • Prieto-Amparán, J. A., Pinedo-Alvarez, A., Vázquez-Quintero, G., Valles-Aragón, M. C., Rascón-Ramos, A. E., Martinez-Salvador, M., & Villarreal-Guerrero, F. (2019). A multivariate geomorphometric approach to prioritize erosion-prone watersheds. Sustainability, 11(18), 5140. https://doi.org/10.3390/su11185140

    Article  CAS  Google Scholar 

  • Radda, I. A., Kumar, B. M., & Pathak, P. (2021). Land degradation in Bihar, India: An assessment using rain-use efficiency and residual trend analysis. Agricultural Research, 10, 434–447. https://doi.org/10.1007/s40003-020-00514-y

    Article  Google Scholar 

  • Rahaman, S. A., Ajeez, S. A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system—A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia, 4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172

    Article  Google Scholar 

  • Roy, S., & Chintalacheruvu, M. R. (2023). Enhanced morphometric analysis for soil erosion susceptibility mapping in the Godavari river basin, India: Leveraging Google Earth Engine and principal component analysis. ISH Journal of Hydraulic Engineering, 30(2), 228–244. https://doi.org/10.1080/09715010.2023.2292280

    Article  Google Scholar 

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.

    Article  Google Scholar 

  • Setiawan, O., & Nandini, R. (2021). Sub-watershed prioritization inferred from geomorphometric and landuse/landcover datasets in Sari Watershed, Sumbawa Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 747(1), 012004. https://doi.org/10.1088/1755-1315/747/1/012004

    Article  Google Scholar 

  • Shekar, P. R., Mathew, A., Arun, P. S., & Gopi, V. P. (2023). Sub-watershed prioritization using morphometric analysis, principal component analysis, hypsometric analysis, land use/land cover analysis, and machine learning approaches in the Peddavagu River Basin, India. Journal of Water and Climate Change, 14(7), 2055–2084. https://doi.org/10.2166/wcc.2023.221

    Article  Google Scholar 

  • Shlens, J. (2005). A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100.

  • Siddiqui, R., Said, S., & Shakeel, M. (2020). Nagmati River sub-watershed prioritization using PCA, integrated PCWS, and AHP: A case study. Natural Resources Research, 29, 2411–2430. https://doi.org/10.1007/s11053-020-09622-6

    Article  Google Scholar 

  • Singh, M. C., Satpute, S., & Prasad, V. (2023). Remote sensing and GIS-based watershed prioritization for land and water conservation planning and management. Water Science & Technology, 88(1), 233–265. https://doi.org/10.2166/wst.2023.207

    Article  Google Scholar 

  • Singh, W. R., Barman, S., & Tirkey, G. (2021). Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai Watershed. Applied Water Science, 11, 151. https://doi.org/10.1007/s13201-021-01483-5

    Article  Google Scholar 

  • Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Science, 248, 655–668. https://doi.org/10.2475/ajs.248.9.655

    Article  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of Geological Society of America, 63, 1117.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology. McGraw.

    Google Scholar 

  • Suryawanshi, A., Nema, A. K., Jaiswal, R. K., Jain, S., & Kar, S. K. (2021). Identification of soil erosion prone areas of Madhya Pradesh using USLE/RUSLE. Journal of Agricultural Engineering, 58(2), 177–191. https://doi.org/10.52151/jae2021581.1744

    Article  Google Scholar 

  • Thakkar, H., Dandekar, P., & Gaud, G. (2011). Dams, rivers and people. SANDRP, 9(3–4), 1–32.

  • Thakur, A., Jaiswal, R. K., Nema, A. K., Kar, S. K., & Poonam. (2022). Watershed prioritization using multi-criteria decision analysis tool for Bhopal (upper) lake catchment, Madhya Pradesh. Indian Journal of Soil Conservation, 50(1), 12–19.

    Google Scholar 

  • Thakur, A., Nema, A. K., Jaiswal, R. K., & Mishra, C. D. (2019). Morphometric analysis of Bhopal lake catchment using geospatial technology. Journal of Soil and Water Conservation, 18(1), 70–75. https://doi.org/10.5958/2455-7145.2019.00009.2

    Article  Google Scholar 

  • Verma, N., Patel, R. K., & Choudhari, P. (2023). Watershed prioritization for soil conservation in a drought prone watershed of Eastern India: Tel river basin, Odisha. Geology, Ecology, and Landscapes, 7(4), 405–418. https://doi.org/10.1080/24749508.2021.2022830

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their instructive comments, which helped to improve this paper.

Funding

This research is not funded by any sources.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, P.J. and A.K.S.; methodology, P.J., A.U. and P.K.S.; data collection, A.K., K.S. and P.P.K; validation, P.J., R.K. and D.S.; investigation, P.J. and A.K.S.; resources, A.D. and A.U.; writing—original draft preparation, P.J. and P.K.S.; writing—review and editing, P.J., A.U., A.K.S., D.S., K.S. and A.K.; visualization, P.K.S. and A.D.; supervision, P.J.; project administration, A.D. and A.U. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Pawan Jeet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeet, P., Singh, A.K., Upadhyaya, A. et al. A Multivariate Geomorphometric Approach to Prioritize Drought Prone Sakri Basin for Land and Water Resource Management. J Indian Soc Remote Sens (2024). https://doi.org/10.1007/s12524-024-01884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12524-024-01884-4

Keywords

Navigation