Skip to main content

Advertisement

Log in

Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Watersheds in the subtropical Himalayan basins are highly prone to land degradation due to deforestation, landslides, intensive agriculture, population pressure and overgrazing, in particular, where various fluvial and denudation processes occur. It is important to assess the magnitude of problem and to understand the erosion process under normal conditions, so that effective measures can be implemented. Therefore, the study selected Kalsa watershed from the Lesser Himalayan region, where soil erosion is more prominent. Regarding this issue, to identify the hot spot of soil erosion of the basin, watershed prioritization methods using advanced geographical information system and remote sensing techniques integrated with weighted sum analysis (WSA) and principal component analysis (PCA). In addition, a comparison has been made to evaluate the performance of these models. The study considered sixteen different morphometric parameters, including linear (rho coefficient, stream frequency, drainage density, length of overland flow, drainage texture and constant of channel maintenance); landscape (relative relief, relief ratio, basin slope and ruggedness number); and shape (elongation ratio, form factor, circulatory ratio and compactness coefficient). Both the methods PCA and WSA indicate the same results showing high priority, meaning the outlet watersheds have high priority. The sub-watersheds in the north-eastern part have the lowest priority. The results also show that the length overland flow, relative relief, basin relief ratio and hypsometric integral are the most important indicators. The sub-watersheds prioritize high ranks, medium ranks and low ranks out of 10 sub-watersheds covering about 45.32%, 27.78% and 26.90% area of the Kalsa River watershed, respectively. This study will help regional planners, farmers and governments take more detailed decisions to propose efficient soil erosion control measures and conservation priorities of the watershed. The study findings have implications for sustainable land management and conservation goal targets (target 2.3 and 2.4; target 3.9; target 13.1, 13.2 and 13.3; target 15.3 and 15.4), which finally helps to achieve the United Nation’s 2030 Agenda for Sustainable Development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8

Similar content being viewed by others

References

  • Adhami, M., & Sadeghi, S. H. (2016). Sub-watershed prioritization based on sediment yield using game theory. Journal of Hydrology, 541, 977–987.

    Article  Google Scholar 

  • Ahmed, I., Pan, D. N., Debnath, J., & Bhowmik, M. (2017). An assessment to prioritise the critical erosion-prone sub-watersheds for soil conservation in the Gumti basin of Tripura, North-East India. Environmental Monitoring and Assessment, 189(11), 600. https://doi.org/10.1007/s10661-017-6315-6

    Article  CAS  Google Scholar 

  • Altaf, F., Meraj, G., & Romshoo, S. A. (2013). Morphometric analysis to infer hydrological behaviour of lidder watershed, western Himalaya, India. Geography Journal, 2013, 1–14. https://doi.org/10.1155/2013/178021

    Article  Google Scholar 

  • Altaf, S., Meraj, G., & Romshoo, S. A. (2014). Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment, 186(12), 8391–8412. https://doi.org/10.1007/s10661-014-4012-2.

    Article  Google Scholar 

  • Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment, 613, 1385–1400.

    Article  Google Scholar 

  • Arefin, R., Mohir, M. M. I., & Alam, J. (2020). Watershed prioritization for soil and water conservation aspect using GIS and remote sensing: PCA-based approach at northern elevated tract Bangladesh. Applied Water Science, 10(4), 1–19.

    Article  Google Scholar 

  • Ayele, G. T., Teshale, E. Z., Yu, B., Rutherfurd, I. D., & Jeong, J. (2017). Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water, 9(10), 782.

    Article  Google Scholar 

  • Bagherzadeh, A. (2014). Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arabian Journal of Geosciences, 7(1), 211–220. https://doi.org/10.1007/s12517-012-0730-3.

    Article  Google Scholar 

  • Banerjee, A., Singh, P., & Pratap, K. (2017). Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: An integrated GIS-based approach. Applied Water Science, 7(4), 1807–1815. https://doi.org/10.1007/s13201-015-0354-3

    Article  Google Scholar 

  • Batar, A. K., Watanabe, T., & Kumar, A. (2017). Assessment of land-use/land-cover change and forest fragmentation in the garhwal Himalayan Region of India. Environments. https://doi.org/10.3390/environments4020034

    Article  Google Scholar 

  • Biswas, S. S., Pal, R., Pramanik, M. K., & Mondal, B. (2015). Assessment of anthropogenic factors and floods using remote sensing and GIS on lower regimes of kangshabati-rupnarayan River Basin, India. International Journal of Remote Sensing GIS, 4(2), 77–86.

    Google Scholar 

  • Biswas, S., Sudhakar, S., & Desai, V. R. (2002). Remote sensing and geographic information system based approach for watershed conservation. Journal of Surveying Engineering, 128(3), 108–124. https://doi.org/10.1061/(ASCE)0733-9453(2002)128:3(108)

    Article  Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Calef, W., & Newcomb, R. (1953). An average slope map of illinois. Annals of the Association of American Geographers, 43(4), 305–316. https://doi.org/10.1080/00045605309352157

    Article  Google Scholar 

  • Chandniha, S. K., & Kansal, M. L. (2017). Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India. Applied Water Science, 7(1), 329–338. https://doi.org/10.1007/s13201-014-0248-9

    Article  Google Scholar 

  • Chauhan, P., Chauniyal, D. D., Singh, N., & Tiwari, R. K. (2016). Quantitative geo-morphometric and land cover-based micro-watershed prioritization in the Tons river basin of the lesser Himalaya. Environmental Earth Sciences, 75(6), 498. https://doi.org/10.1007/s12665-016-5342-x

    Article  Google Scholar 

  • Chorley, R. J., & Morley, L. S. D. (1959). A simplified approximation for the hypsometric integral. Journal of Geology, 67(5), 566–571.

    Article  Google Scholar 

  • Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267. https://doi.org/10.1080/24749508.2018.1452482

    Article  Google Scholar 

  • Chowdary, V. M., Chakraborthy, D., Jeyaram, A., Murthy, Y. K., Sharma, J. R., & Dadhwal, V. K. (2013). Multi-criteria decision-making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resources Management, 27(10), 3555–3571.

    Article  Google Scholar 

  • Das, D. (2014). Identification of erosion prone areas by morphometric analysis using GIS. Journal of the Institution of Engineers (india): Series A, 95(1), 61–74. https://doi.org/10.1007/s40030-014-0069-8

    Article  Google Scholar 

  • Fan, M., & Shibata, H. (2014). Spatial and temporal analysis of hydrological provision ecosystem services for watershed conservation planning of water resources. Water Resources Management, 28(11), 3619–3636.

    Article  Google Scholar 

  • Farhan, Y., Anbar, A., Al-Shaikh, N., Almohammad, H., Alshawamreh, S., & Barghouthi, M. (2018). Prioritization of sub-watersheds in a large semi-arid drainage basin (Southern Jordan) using morphometric analysis, GIS, and multivariate statistics. Agricultural Sciences, 9(04), 437.

    Article  Google Scholar 

  • Gaikwad, R., & Bhagat, V. (2017). Multi-criteria watershed prioritization of Kas Basin in Maharashtra India: AHP and influence approaches. Hydrospatial Analysis, 1(1), 41–61.

    Article  Google Scholar 

  • Gopinath, G., Nair, A. G., Ambili, G. K., & Swetha, T. V. (2016). Watershed prioritization based on morphometric analysis coupled with multi-criteria decision making. Arabian Journal of Geosciences, 9(2), 1–17. https://doi.org/10.1007/s12517-015-2238-0

    Article  CAS  Google Scholar 

  • Gravelius, H. (1914). Flusskunde. Goschen Verlagshan dlug Berlin. En Zavoianu, I. 1985. Morphometry of drainage basins. Elsevier, Amsterdam.

  • Hadley, R. F. (1961). Some effects of microclimate on slope morphology and drainage basin development. Geological Survey Research, 1961, B32–B34.

    Google Scholar 

  • Hembram, T. K., & Saha, S. (2020). Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environment, Development and Sustainability, 22(2), 1241–1268. https://doi.org/10.1007/s10668-018-0247-3

    Article  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydro-physical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.

    Article  Google Scholar 

  • Jadhav, S. I., & Babar, M. D. (2014). Linear and aerial aspect of basin morphometry of Kundka sub-basin of Sindphana Basin (Beed), Maharashtra, India. International Journal of Geology, Agriculture and Environmental Sciences, 2(3), 2348–0254.

    Google Scholar 

  • Jain, M. K., & Das, D. (2010). Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resources Management, 24(10), 2091–2112. https://doi.org/10.1007/s11269-009-9540-0

    Article  Google Scholar 

  • Jain, S. K., Singh, P., Saraf, A. K., & Seth, S. M. (2003). Estimation of sediment yield for a rain, snow and glacier-fed river in the western Himalayan region. Water Resources Management, 17(5), 377–393.

    Article  Google Scholar 

  • Jasrotia, A. S., & Singh, R. (2006). Modeling runoff and soil erosion in a catchment area, using the GIS, in the Himalayan region, India. Environmental Geology, 51(1), 29–37.

    Article  Google Scholar 

  • Kadam, A. K., Jaweed, T. H., Kale, S. S., Umrikar, B. N., & Sankhua, R. N. (2019b). Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics, Natural Hazards and Risk, 10(1), 986–1006. https://doi.org/10.1080/19475705.2018.1555189

    Article  Google Scholar 

  • Kadam, A., Karnewar, A. S., Umrikar, B., & Sankhua, R. N. (2019a). Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method. Environment, Development and Sustainability, 21(4), 1809–1833. https://doi.org/10.1007/s10668-018-0104-4

    Article  Google Scholar 

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., & Van Der Putten, W. H. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. The Soil. https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Khare, D., Mondal, A., Kundu, S., & Mishra, P. K. (2017). Climate change impact on soil erosion in the Kalsa River Basin, North India. Applied Water Science, 7(5), 2373–2383. https://doi.org/10.1007/s13201-016-0419-y

    Article  Google Scholar 

  • Kumar, A., & Negi, M. S. (2016). Physiographic study of Kalsa valley (Rudraprayag District) Garhwal Himalaya by morphometric analysis and Geospatial Techniques. International Journal of Geomatics and Geosciences, 7(3), 285–298.

    Google Scholar 

  • Kumar, A., Chaudhary, S., & Negi, M. S. (2019). A study of spatio-temporal landuse/land cover change dynamics in Rudraprayag District, (Garhwal Himalaya) using Remote Sensing and GIS. Journal of Global Resources, 5(02), 61–69.

    Google Scholar 

  • Kumar, A., Pramanik, M., Chaudhary, S., et al. (2020a). Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2020.10.001

    Article  Google Scholar 

  • Kumar, L., Joshi, G., & Agarwal, K. K. (2020b). Morphometry and morpho-structural studies of the parts of gola river and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotectonics, 54(3), 410–427. https://doi.org/10.1134/S0016852120030048

    Article  Google Scholar 

  • Lal, R., Horn, R., & Kosaki, T. (Ed.). (2018). Soil and Sustainable Development Goals. Schweizerbart Science Publishers. Accessed from: http://www.schweizerbart.de//publications/detail/isbn/9783510654253/Soil_and_Sustainable_Development_Goals_.

  • Langbein, W. B. (1947). Topographic characteristics of drainage basins. Water Supply Paper. https://doi.org/10.3133/wsp968C

    Article  Google Scholar 

  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. WH Freeman and Company San Francisco.

    Google Scholar 

  • MacCrimmon, K. R. (1968). Decision-making among Multiple-attribute alternatives: A survey and consolidated approach. Advanced Research Projects Agency.

    Google Scholar 

  • Mahapatra, S. K., Reddy, G. P. O., Nagdev, R., Yadav, R. P., Singh, S. K., & Sharda, V. N. (2018). Assessment of soil erosion in the fragile Himalayan ecosystem of Uttarakhand, India using USLE and GIS for sustainable productivity. Current Science, 115(1), 108.

    Article  Google Scholar 

  • Malik, A., Kumar, A., & Kandpal, H. (2019a). Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12(4), 118.

    Article  Google Scholar 

  • Malik, A., Kumar, A., Kushwaha, D. P., Kisi, O., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2019b). The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: A case study in India. Water (switzerland). https://doi.org/10.3390/w11061138

    Article  Google Scholar 

  • Malik, Z. A., Panwar, M. S., & Parmar, M. K. (2012). Landslide hazard zonation of district Rudraprayag of Garhwal Himalaya. International Journal of Curr. Res, 4(10), 237–244.

    Google Scholar 

  • Mandal, B., & Mandal, S. (2018). Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish river basin of eastern Darjeeling Himalaya, India. Advances in Space Research, 62(11), 3114–3132. https://doi.org/10.1016/j.asr.2018.08.008

    Article  Google Scholar 

  • Mandal, D., & Sharda, V. N. (2011). Assessment of permissible soil loss in India employing a quantitative bio-physical model. Current Science, 100(3), 383–390.

  • Mandal, D., & Sharda, V. N. (2013). Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24(5), 430–437.

    Google Scholar 

  • Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188(4), 225. https://doi.org/10.1007/s10661-016-5218-2

    Article  Google Scholar 

  • Masselink, R. J. H., Heckmann, T., Temme, A. J. A. M., Anders, N. S., Gooren, H. P. A., & Keesstra, S. D. (2017). A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes, 31(1), 207–220. https://doi.org/10.1002/hyp.10993 .

    Article  Google Scholar 

  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7(3), 1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  • Miller, O. M., & Summerson, C. H. (1960). Slope-zone maps. Geographical Review, 50(2), 194–202.

    Article  Google Scholar 

  • Miller, V. C. (1953). Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Columbia University New York.

  • Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272.

    Article  CAS  Google Scholar 

  • Montgomery, D. R., & Dietrich, W. E. (1992). Channel initiation and the problem of landscape scale. Science, 255(5046), 826–830. https://doi.org/10.1126/science.255.5046.826

    Article  CAS  Google Scholar 

  • Morisawa, M. (1988). The Geological Society of America Bulletin and the development of quantitative geomorphology. Geological Society of America Bulletin, 100(7), 1016–1022.

    Article  Google Scholar 

  • Mosbahi, M., Benabdallah, S., & Boussema, M. R. (2013). Assessment of soil erosion risk using SWAT model. Arabian Journal of Geosciences, 6(10), 4011–4019.

    Article  Google Scholar 

  • Naqvi, H. R., Athick, A. M. A., Siddiqui, L., & Siddiqui, M. A. (2019). Multiple modeling to estimate sediment loss and transport capacity employing hourly rainfall and In-Situ data: A prioritization of highland watershed in Awash River basin, Ethiopia. CATENA, 182, 104173.

    Article  Google Scholar 

  • Narayana, D. V., & Babu, R. (1983). Estimation of soil erosion in India. Journal of Irrigation and Drainage Engineering, 109(4), 419–434.

    Article  Google Scholar 

  • Pal, R., Biswas, S. S., Mondal, B., & Pramanik, M. K. (2016b). Landslides and floods in the tista basin (Darjeeling and Jalpaiguri Districts): Historical evidence, causes and consequences. Journal of Geophysics Union, 20(2), 209–215.

    Google Scholar 

  • Pal, R., Biswas, S. S., Pramanik, M. K., & Mondal, B. (2016a). Bank vulnerability and avulsion modelling of the Bhagirathi-Hugli river between Ajay and Jalangi confluences in lower Ganga Plain, India. Model Earth System Environment, 2, 65.

    Article  Google Scholar 

  • Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydro-geomorphic controls. Water Resources Research, 12(5), 941–952. https://doi.org/10.1029/WR012i005p00941

    Article  Google Scholar 

  • Paul, I. I., & Bayode, E. N. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria. Journal of Geography Geology, 4(2), 147–155.

    Article  Google Scholar 

  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079–1084.

    Article  Google Scholar 

  • Pramanik, K. (2015). Changes and status of Mangrove habitat in Ganges Delta: Case study in Indian part of Sundarbans. Forest Research, 4(3), 1–7.

    Google Scholar 

  • Pramanik, M. K. (2016a). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Syst Environ, 2(2), 56.

    Article  Google Scholar 

  • Pramanik, M. K. (2016b). Morphometric characteristics and water resource management of Tista river basin using remote sensing and GIS techniques. Journal of Hydrogeology and Hydrologic Engineering. https://doi.org/10.4172/23259647.1000131

    Article  Google Scholar 

  • Pramanik, M. K. (2017). Impacts of predicted sea-level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India. Environment Development and Sustainability, 19, 1343–1366. https://doi.org/10.1007/s10668-016-9804-9

    Article  Google Scholar 

  • Pramanik, M. K., Biswas, S. S., Mondal, B., et al. (2016). Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna-Godavari delta region, Andhra Pradesh, east coast of India. Environment, Development and Sustainability, 18, 1635–1655. https://doi.org/10.1007/s10668-015-9708-0

    Article  Google Scholar 

  • Pramanik, M., Biswas, S., Mukherjee, T., Roy, A., & Pal, R. (2015). Sea level rise and coastal vulnerability along the eastern coast of India through geo-spatial technologies. Journal of Geophysics Remote Sensing, 4, 2.

    Article  Google Scholar 

  • Pramanik, M. K., Dash, P., & Behal, D. (2021). Improving outcomes for socio-economic variables with coastal vulnerability index under significant sea-level rise: An approach from Mumbai coasts. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01239-w

    Article  Google Scholar 

  • Pramanik, M., Diwakar, A. K., Dash, P., et al. (2020b). Conservation planning of cash crops species (Garcinia gummi-gutta) under current and future climate in the Western Ghats, India. Environment Development and Sustainability. https://doi.org/10.1007/s10668-020-00819-6

    Article  Google Scholar 

  • Pramanik, M., Paudel, U., Mondal, B., Chakraborti, S., & Deb, P. (2018). Predicting climate change impacts on the distribution of the threatened Garcinia Indica in the Western Ghats, India. Climate Risk Management, 19, 94–105.

    Article  Google Scholar 

  • Pramanik, M., Singh, P., & Dhiman, R. (2020a). Identification of bio-climatic determinants and potential risk areas for kyasanur forest disease in southern India using maxent modelling approach. BMC Infectious Disease. https://doi.org/10.21203/rs.2.22417/v1

    Article  Google Scholar 

  • Rahmati, O., Haghizadeh, A., & Stefanidis, S. (2016). Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River Basin, Iran. Water Resources Management, 30(3), 1131–1150.

    Article  Google Scholar 

  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., & Shirzadi, A. (2019). SWPT: An automated gis-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6), 2167–2175.

    Article  Google Scholar 

  • Raisz, E., & Henry, J. (1937). An average slope map of southern New England. Geographical Review, 27(3), 467–472.

    Article  Google Scholar 

  • Ratnam, K. N., Srivastava, Y. K., Rao, V. V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis— remote sensing and GIS perspective. Journal of the Indian society of remote sensing, 33(1), 25–38. https://doi.org/10.1007/BF02989988

    Article  Google Scholar 

  • Rawat, J. S., & Rawat, M. S. (1994). Accelerated Erosion and Denudation in the Nana Kosi Watershed, Central Himalaya, India. Part I: Sediment Load. Mountain Research and Development, 14(1), 25–38. https://doi.org/10.2307/3673736

  • Rawat, M. S., Uniyal, D. P., Dobhal, R., Joshi, V., Rawat, B. S., Bartwal, A., Singh, D., & Aswal, A. (2015). Study of landslide hazard zonation in Kalsa Valley, Rudraprayag district, Uttarakhand using remote sensing and GIS. Current Science, 109(1).

  • Rich, J. L. (1916). A graphical method of determining the average inclination of a land surface from a contour map. Transaction Illinois Academy of Science, 9, 196–199.

    Google Scholar 

  • Sati, S. P., Sundriyal, Y. P., & Rawat, G. S. (2007). Geomorphic indicators of neotectonic activity around Srinagar (Alaknanda basin), Uttarakhand. Current Science, 92(6), 824–829. http://www.jstor.org/stable/24097816.

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

    Article  Google Scholar 

  • Sharma, R., Sahai, B., & Karale, R. L. (1986). Identification of erosion-prone areas in a part of the Ukai catchment. In Asian Conference on Remote Sensing, 6 th, Hyderabad, India (pp. 121-126).

  • Sharma, S. K., Pathak, R., & Suraiya, S. (2012). Prioritization of sub-watersheds based on morphometric analysis using remote sensing and GIS technique. JNKVV Res Journal, 46(3), 407–413.

    Google Scholar 

  • Siddiqui, R., Said, S., & Shakeel, M. (2020). Nagmati River Sub-watershed Prioritization Using PCA, Integrated PCWS, and AHP: A Case Study. Natural Resources Research. https://doi.org/10.1007/s11053-020-09622-6

    Article  Google Scholar 

  • Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar river basin. National geographical Journal of india, 43(1), 31–43.

    Google Scholar 

  • Singh, O., & Singh, J. (2018). Soil erosion susceptibility assessment of the lower Himachal Himalayan Watershed. Journal of the Geological Society of India, 92(2), 157–165. https://doi.org/10.1007/s12594-018-0975-x

    Article  Google Scholar 

  • Singh, S., & Upadhyay, D. P. (1982). Topological and geometric study of drainage network. se chhota Nagpur Region, India. Perspectives in Geomorphology, 2, 199–233.

    Google Scholar 

  • Singh, V. P., & Singh, V. P. (1992). Elementary hydrology. Prentice-Hall.

    Google Scholar 

  • Smith, G.-H. (1938). The morphometry of landscape: An analysis of slope. Annals of Association of American Geographers, 29, 34.

    Google Scholar 

  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668. https://doi.org/10.2475/ajs.248.9.655

    Article  Google Scholar 

  • Strahler, A. N. (1950). Equilibrium theory of erosional slopes approached by frequency distribution analysis. Part I. American Journal of Science, 248, 673–696.

    Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (Area-Altitude) analysis of erosional topography. GSA Bulletin, 63(11), 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    Article  Google Scholar 

  • Strahler, A. N. (1956). Quantitative slope analysis. Geological Society of America Bulletin, 67(5), 571–596.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology (pp. 4–39). McGraw-Hill.

    Google Scholar 

  • Telore, N. V. (2020). Quantitative morphometric analysis of the yerla river basin, deccan trap region, India. Geoecology of Landscape Dynamics (pp. 115–132). Springer.

    Chapter  Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906.

    Article  CAS  Google Scholar 

  • Triantaphyllou, E., & Mann, S. H. (1989). An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox. Decision Support Systems, 5(3), 303–312. https://doi.org/10.1016/0167-9236(89)90037-7 .

    Article  Google Scholar 

  • Uddin, K., Murthy, M. S. R., Wahid, S. M., & Matin, M. A. (2016). Estimation of soil erosion dynamics in the Koshi basin using GIS and remote sensing to assess priority areas for conservation. PLoS ONE, 11(3), e0150494. https://doi.org/10.1371/journal.pone.0150494

    Article  CAS  Google Scholar 

  • UNSDG. (2015). Transforming our world: the 2030 Agenda for Sustainable Development, Available at: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E.

  • Valdia, K. S. (1979). Kumaon Himalayas. Tectonic Geology of the Himalayas, 1–14. Accessed from: http://ci.nii.ac.jp/naid/10008805421/en/

  • Valdiya, K. S. (2001). Himalaya: emergence and evolution. Universities Press.

    Google Scholar 

  • Waikar, M., & Nilawar, A. (2014). Morphometric analysis of a drainage basin using geographical information system: A case study. International Journal of Multidisciplinary and Current Research, 2(1), 179–184.

    Google Scholar 

  • Wentworth, C. K. (1930). A simplified method of determining the average slope of land surfaces. American Journal of Science, 117, 184–194.

    Article  Google Scholar 

  • Yadav, S. K., Dubey, A., Szilard, S., & Singh, S. K. (2018). Prioritisation of sub-watersheds based on earth observation data of agricultural dominated northern river basin of India. Geocarto International, 33(4), 339–356.

    Article  Google Scholar 

  • Young, A. (1972). Slopes: Edinburgh (p. 288). Oliver and Boyd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, S., Pramanik, M. et al. Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach. Environ Dev Sustain 24, 3723–3761 (2022). https://doi.org/10.1007/s10668-021-01586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01586-8

Keywords

Navigation