Skip to main content

Advertisement

Log in

Application of Spectral Analysis and Image Processing Methods to Discriminate Hydrothermal Alteration Minerals Around the Tutakdağı (Şebinkarahisar-Giresun) Lead–Zinc Deposits, Northeastern Turkey

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The Tutakdağı (Şebinkarahisar-Giresun) area is located in the southern part of the Eastern Pontides, northeastern Turkey. It contains numerous types of mineralization, examples include massive sulfide, porphyry, skarn, and vein. The Tutakdağı area contains vein-type Pb–Zn deposits hosted by Upper Cretaceous volcanic rocks. Hydrothermal alteration and oxidized weathering products are well exposed in this mineralization area. Due to the inaccessible points, steep slopes, and rugged topography of the area, it is difficult to apply traditional geological field studies. This research addresses the applicability of remote sensing methods to identify and map alteration mineralogy within the area and presents the results of a set of remote sensing investigations, including spectral measurements, band ratios, relative absorption band depth, principal component analysis, and matched filtering techniques on the Landsat-8 OLI and the ASTER data sets. The spectral investigations were performed on the representative altered rock samples and the powder samples obtained during the clay separation processes. The spectra of hydrothermal alteration minerals like kaolinite, halloysite, illite, montmorillonite, kaolin/smectite, illite + smectite, illite + montmorillonite, montmorillonite + smectite, muscovite, chlorite, and calcite and the iron oxide/hydroxide minerals like jarosite, limonite and goethite were identified. A mineral distribution map has been prepared, and all the outputs on these maps contain useful information to track the distributions of hydrothermal alteration minerals, weathering-related iron oxide/hydroxide occurrences surrounding mineralization zones, and the lineament/lineament density. These maps are prepared in a shorter time and with lower costs compared to classical field geological methods and can make a valuable contribution to the exploration of new lead–zinc deposits in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from 1/500.000 scale geological map of Turkey (MTA, 2002)

Fig. 2

(Modified from the geology map prepared by Şaşmaz and Sağıroğlu, (1994)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdeen, M. M., Allison, T. K., Abdelsalam, M. G., & Stern, R. J. (2001). Application of ASTER band-ratio images for geological mapping in arid regions; the neoproterozoic Allaqi Suture, Egypt. Abstract with Program Geological Society of America, 3(3), 289.

    Google Scholar 

  • Abrams, M. (2000). The advanced spaceborne thermal emission and reflection radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing. https://doi.org/10.1080/014311600210326

    Article  Google Scholar 

  • Abrams, M. J., Brown, D., Lepley, L., & Sadowski, R. (1983). Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78(4), 591–604. https://doi.org/10.2113/gsecongeo.78.4.591

    Article  Google Scholar 

  • Abubakar, A. J., Hashim, M., & Pour, A. B. (2018). Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: A case study from Yankari Park NE Nigeria. Geocarto International. https://doi.org/10.1080/10106049.2017.1421716

    Article  Google Scholar 

  • Alan, I., Balci, V., Keskin, H., Altun, I., Böke, N., DemiRbağ, H., & Hanilçi, N. (2019). Tectonostratigraphic characteristics of the area between Çayeli (Rize) and İspir (Erzurum). Bulletin of the Mineral Research and Exploration. https://doi.org/10.19111/bulletinofmre.465317

    Article  Google Scholar 

  • Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences. https://doi.org/10.14419/ijbas.v3i3.2821

  • Alimohammadi, M., Alirezaei, S., & Kontak, D. J. (2015). Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2015.04.010

    Article  Google Scholar 

  • Amer, R., Kusky, T., & Ghulam, A. (2010). Lithological mapping in the Central Eastern desert of Egypt using ASTER data. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2009.06.004

    Article  Google Scholar 

  • Aslaner, M., & Gedikoğlu, A. (1984). Metallic mineralization types of Harşit (Tirebolu-Giresun) area. Karadeniz Tech Univ Geol J, 3, 1–15.

    Google Scholar 

  • Ayan, Z. (1991). Sebinkarahisar’in (Giresun) kuzeybatisindaki Pb-Zn-Cu cevherlesmelerinin mineralojik ve jeokimyasal incelenmesi ve kökensel yorumu. in Unpublished. Ph.D. thesis, Dokuz Eylül University, p. 175

  • Azizi, H., Tarverdi, M. A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research. https://doi.org/10.1016/j.asr.2010.03.014

    Article  Google Scholar 

  • Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research. https://doi.org/10.1016/j.asr.2010.08.021

    Article  Google Scholar 

  • Bektas, O., Sen, C., Atici, Y., & Koprubasi, N. (1999). Migration of the upper cretaceous subduction-related volcanism towards the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95–106.

    Article  Google Scholar 

  • Bennett, S. A., Atkinson, W. W., & Kruse, F. A. (1993). Use of thematic mapper imagery to identify mineralization in the Santa Teresa District, Sonora, Mexico. International Geology Review. https://doi.org/10.1080/00206819309465572

    Article  Google Scholar 

  • Bodruddoza Mia, M., & Fujimitsu, Y. (2012). Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. Journal of Earth System Science. https://doi.org/10.1007/s12040-012-0211-9

    Article  Google Scholar 

  • Bozkaya, G., & Gökce, A. (2003). İnler Yaylası (Şebinkarahisar-Giresun) Kurşun-Çinko Yataklarında Kararlı İzotoplar (O, H ve S) Jeokimyası İncelemeleri. Hacettepe Yerbilimleri Enstitüsü, 27, 75–84.

    Google Scholar 

  • Cagatay, M. N. (1993). Hydrothermal alteration associated with volcanogenic massive sulfide deposits: Examples from Turkey. Economic Geology. https://doi.org/10.2113/gsecongeo.88.3.606

    Article  Google Scholar 

  • Çakir, E. Ü., & Gökçe, A. (2019). Geology, fluid inclusion, and stable isotope (O, H, S, c) characteristics of thhazinemağara (gümüşhane) lead-zinc deposit, NE Turkey. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-1809-22

    Article  Google Scholar 

  • Canbaz, O., Gürsoy, Ö., & Gökce, A. (2018). Detecting clay minerals in hydrothermal alteration areas with integration of ASTER image and spectral data in Kösedag-Zara (Sivas), Turkey. Journal of Geological Society of India, 91(4), 389–516.

    Article  Google Scholar 

  • Çiftçi, E. (1993). Application of soil geochemistry in target delineation using As-Pb geochemistry in soils developed on the Killik (Espiye-Giresun) polymetallic mineralization. MSc thesis, Institute of Natural Sciences, Karadeniz Technical Universty, Trabzon, p. 93.

  • Çiftçi, E. (2000). No titlemineralogy, paragenetic sequence, geochemistry and genesis of the gold and silver bearing upper cretaceous mineral deposits, northeastern Turkey. PhD dissertation, University of Missouri-Rolla, USA (unpublished).

  • Clark, R. N. (1999). Spectroscopy of Rocks and Minerals and Principles of Spectrocopy. Remote Sensing for the Earth Sciences: Manual of Remote Sensing.

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research. https://doi.org/10.1029/jb095ib08p12653

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., & Calvin, W. M. (1993). The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 μm. U.S. Geological Survey Open File Report, pp. 93–592.

  • Çörtük, R. M., Çelik, Ö. F., Alkan, A., Özkan, M., & Özyavaş, A. (2020). Distribution of rocks in Pınarbaşı Ophiolite from central Anatolia (Turkey) based on analysis of ASTER and Landsat-8 data. Geological Journal. https://doi.org/10.1002/gj.3844

    Article  Google Scholar 

  • Crosta, A., & Moore, J. (1989). Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: A prospecting case history in Greenstone belt terrain. In International proceedings of the seventh erim thematic conference: Remote sensing for explora. pp. 1173–1187.

  • Cŕosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing. https://doi.org/10.1080/0143116031000152291

    Article  Google Scholar 

  • Crowley, J. K., Brickey, D. W., & Rowan, L. C. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment. https://doi.org/10.1016/0034-4257(89)90021-7

    Article  Google Scholar 

  • Delibaş, O., Moritz, R., Ulianov, A., Chiaradia, M., Saraç, C., Revan, K. M., & Göç, D. (2016). Cretaceous subduction-related magmatism and associated porphyry-type Cu-Mo prospects in the Eastern Pontides, Turkey: New constraints from geochronology and geochemistry. Lithos. https://doi.org/10.1016/j.lithos.2016.01.020

    Article  Google Scholar 

  • Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2006.05.004

    Article  Google Scholar 

  • Duuring, P., Hagemann, S. G., Novikova, Y., Cudahy, T., & Laukamp, C. (2012). Targeting iron ore in banded iron formations using ASTER data: Weld range greenstone belt, Yilgarn craton, Western Australia. Economic Geology. https://doi.org/10.2113/econgeo.107.4.585

    Article  Google Scholar 

  • Eyuboglu, Y. (2006). Description and geotectonic important of the Alaskan-Type mafic–ultramafic rocks in the Eastern Pontide Magmatic Arc (NE Turkey). In PhD Thesis, Karadeniz Technical University, Trabzon.

  • Eyuboglu, Y., Santosh, M., Yi, K., Tuysuz, N., Korkmaz, S., Akaryali, E., & Bektas, O. (2014). The Eastern Black Sea-type volcanogenic massive sulfide deposits: Geochemistry, zircon U-Pb geochronology and an overview of the geodynamics of ore genesis. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2013.11.009

    Article  Google Scholar 

  • Eyuboglu, Y., Santosh, M., Yi, K., Bektaş, O., & Kwon, S. (2012). Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region. Lithos. https://doi.org/10.1016/j.lithos.2012.04.034

    Article  Google Scholar 

  • Gabr, S. S., Hassan, S. M., & Sadek, M. F. (2015). Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2015.04.021

    Article  Google Scholar 

  • Goetz, A. F. H., Rock, B. N., & Rowan, L. C. (1983). Remote sensing for exploration: An overview. Economic Geology. https://doi.org/10.2113/gsecongeo.78.4.573

    Article  Google Scholar 

  • Gökce, A., & Spiro, B. (2002). Fluid-related characteristics of the Çakmakkaya and Damarköy copper deposits, Northeast Turkey. International Geology Review. https://doi.org/10.2747/0020-6814.44.8.744

    Article  Google Scholar 

  • Gökçe, A., & Bozkaya, G. (2006). Lead and sulfur isotope evidence for the origin of the Inler Yaylasi lead-zinc deposits, Northern Turkey. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2004.10.001

    Article  Google Scholar 

  • Gökce, A., & Spiro, B. (2000). Sulfur-isotope characteristics of the volcanogenic cu-zn-pb deposits of the eastern pontide region, northeastern turkey. International Geology Review. https://doi.org/10.1080/00206810009465100

    Article  Google Scholar 

  • Gupta, R. P. (2003). Remote sensing geology (Vol. 655). Springer.

    Book  Google Scholar 

  • Gürsoy, Ö., Kaya, Ş, Çakir, Z., Tatar, O., & Canbaz, O. (2017). Determining lateral offsets of rocks along the eastern part of the North Anatolian fault zone (Turkey) using spectral classification of satellite images and field measurements. Geomatics, Natural Hazards and Risk, 8(2), 1276–1288. https://doi.org/10.1080/19475705.2017.1318794

    Article  Google Scholar 

  • Hanilçi, N., Öztürk, H., & Kasapçı, C. (2019). Carbonate-Hosted Pb-Zn Deposits of Turkey. In: Pirajno F., Ünlü T., Dönmez C., Şahin M. (eds) Mineral Resources of Turkey. In Modern Approaches in Solid Earth Sciences, vol 16. Springer, Cham.

  • Harsanyi, J. C., & Chang, C. I. (1994). Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/36.298007

    Article  Google Scholar 

  • Hewson, R., & Cudahy, T. (2011). Issues affecting geological mapping with ASTER data: A case study of the mt fitton area, South Australia. In Remote sensing and digital image processing. https://doi.org/10.1007/978-1-4419-6749-7_13.

  • Hewson, R. D., Cudahy, T. J., & Huntington, J. f. (2001). Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. In International geoscience remote sensing symposium vol. 2, pp. 724–726.

  • Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., & Mauger, A. J. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99(1–2), 159–172. https://doi.org/10.1016/j.rse.2005.04.025

    Article  Google Scholar 

  • Hewson, R. D., Mah, A., Dunne, M., & Cudahy, T. J. (2003). Mapping mineralogical and structural relationships with satellite-borne ASTER and airborne geophysics at Broken Hill. ASEG Extended Abstracts. https://doi.org/10.1071/aseg2003ab072

    Article  Google Scholar 

  • Honarmand, M., Ranjbar, H., & Shahabpour, J. (2013). Combined use of ASTER and ALI data for hydrothermal alteration mapping in the northwestern part of the Kerman magmatic arc, Iran. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2012.731540

    Article  Google Scholar 

  • Hosseinjani Zadeh, M., Tangestani, M. H., Roldan, F. V., & Yusta, I. (2014). Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Advances in Space Research. https://doi.org/10.1016/j.asr.2013.11.029

    Article  Google Scholar 

  • Hung, L. Q., Batelaan, O., & De Smedt, F. (2005). Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V. https://doi.org/10.1117/12.627699

  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics. https://doi.org/10.1190/1.1440721

    Article  Google Scholar 

  • Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology. https://doi.org/10.2113/gsecongeo.74.7.1613

    Article  Google Scholar 

  • Ilbeyli, N. (2008). Geochemical characteristics of the Sebinkarahisar granitoids in the Eastern Pontides, northeast Turkey: Petrogenesis and tectonic implications. International Geology Review. https://doi.org/10.2747/0020-6814.50.6.563

    Article  Google Scholar 

  • Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of landsat TM band ratio images and landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences. https://doi.org/10.1016/S0899-5362(03)00071-X

    Article  Google Scholar 

  • Karakaya, N., & Karakaya, M. C. (2001). Hydrothermal alteration of the saplica volcanic rocks, sebinkarahisar, Turkey. International Geology Review. https://doi.org/10.1080/00206810109465059

    Article  Google Scholar 

  • Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. MTA Dergisi, 66, 20–34.

    Google Scholar 

  • Kuşcu, İ., Tosdal, R. M., & Gençalioğlu-Kuşcu, G. (2019). Porphyry-Cu deposits of Turkey. In: Pirajno F., Ünlü T., Dönmez C., Şahin M. (eds) Mineral resources of Turkey. In Modern approaches in solid earth sciences, vol 16. Springer.

  • Liu, L., Zhuang, D. F., Zhou, J., & Qiu, D. S. (2011). Alteration mineral mapping using masking and Crosta technique for mineral exploration in mid-vegetated areas: A case study in Areletuobie, Xinjiang (China). International Journal of Remote Sensing. https://doi.org/10.1080/01431161003639678

    Article  Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere. https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2010.04.008

    Article  Google Scholar 

  • Maurer, T. (2013). How to pan-sharpen images using the gram-schmidt pan-sharpen method–a recipe. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.https://doi.org/10.5194/isprsarchives-xl-1-w1-239-2013

    Article  Google Scholar 

  • Moradpour, H., Rostami Paydar, G., Pour, A. B., Valizadeh Kamran, K., Feizizadeh, B., Muslim, A. M., & Hossain, M. S. (2022). Landsat-7 and ASTER remote sensing satellite imagery for identification of iron skarn mineralization in metamorphic regions. Geocarto International. https://doi.org/10.1080/10106049.2020.1810327

    Article  Google Scholar 

  • MTA. (2002). 1/500.000 Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü. Ankara.

  • Nait Amara, B., Aissa, D. E., Maouche, S., Braham, M., Machane, D., & Guessoum, N. (2019). Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): Contribution of Landsat-8 data. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-019-4224-4

    Article  Google Scholar 

  • Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22

    Article  Google Scholar 

  • Oyman, T., Delaloye, M., Pişkin, O., & Çalapkulu, F. (1995). Petrochemical and K-Ar radiometric İnvestigations of granitoids from Sebinkarahisar Area (Giresun-Turkey). In Proceedings of international earth sciences colloquium on the Aegean Region, vol. 2, pp. 429–439.

  • Ozgenc, I. (1993). Saplica (Sebinkarahisar-Giresun) alünit yataginin jeolojisi ve alünit olusumuna kükürt izotop verileri ile bir yaklasim. Geological Society of Turkey Bulletin, 36, 25–36.

    Google Scholar 

  • Özkan, M., Çelik, Ö. F., & Özyavaş, A. (2018). Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2017.11.009

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2015). Evaluation of earth observing-1 (EO1) data for lithological and hydrothermal alteration mapping: A case study from Urumieh-Dokhtar volcanic belt, SE Iran. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-014-0444-y

    Article  Google Scholar 

  • Pour, A. B., Hashim, M., & Marghany, M. (2011). Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences. https://doi.org/10.5897/IJPS10.510

    Article  Google Scholar 

  • Rahaman, K. R., Hassan, Q. K., & Ahmed, M. R. (2017). Pan-sharpening of landsat-8 images and its application in calculating vegetation greenness and canopy water contents. ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi6060168

    Article  Google Scholar 

  • Rajendran, S., & Nasir, S. (2017). Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.04.016

    Article  Google Scholar 

  • Rajendran, S., & Nasir, S. (2019). Mapping of hydrothermal alteration in the upper mantle-lower crust transition zone of the Tayin Massif, Sultanate of Oman using remote sensing technique. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2018.10.001

    Article  Google Scholar 

  • Revan, M. K., Genç, Y., Maslennikov, V. V., Maslennikova, S. P., Large, R. R., & Danyushevsky, L. V. (2014). Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the upper-cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2014.05.006

    Article  Google Scholar 

  • Rowan, L. C., Schmidt, R. G., & Mars, J. C. (2006). Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2006.05.014

    Article  Google Scholar 

  • Rowan, L. C., Goetz, A. F. H., & Ashley, R. P. (1977). Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics. https://doi.org/10.1190/1.1440723

    Article  Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X

    Article  Google Scholar 

  • Rowan, L. C., Mars, J. C., & Simpson, C. J. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 99(1–2), 105–126. https://doi.org/10.1016/j.rse.2004.11.021

    Article  Google Scholar 

  • Sabins, F. F. (1987). Remote sensing: Principles and interpretation (2nd ed., p. 460) W. H. Freeman and Co.

  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Salisbury, J. W., & Hunt, G. R. (1974). Remote sensing of rock type in visible and near-infrared.

  • Şaşmaz, A. (1993). Pb–Zn deposits in the Tutakdagi Area, In Unpublished PhD Thesis, Fırat University Science Institute.

  • Şaşmaz, A., & Sağıroğlu, A. (1994). İnler Yaylasi (Şebinkarahisar -Giresun) Pb-Zn yatakları. Türkiye Jeoloji Bülteni, 37, 13–28.

    Google Scholar 

  • Sengor, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.

    Article  Google Scholar 

  • Shahriari, H., Ranjbar, H., & Honarmand, M. (2013). Image segmentation for hydrothermal alteration mapping using PCA and concentration-area fractal model. Natural Resources Research. https://doi.org/10.1007/s11053-013-9211-y

    Article  Google Scholar 

  • Sümengen, M. (2013). 1/100.000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Serisi, Giresun-H40 Paftası, No:190 Maden Tetkik Arama, Ankara.

  • Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating advanced spaceborne thermal emission and reflection radiometer (ASTER) data for alteration zone enhancement in a semiarid area, northern Shahr-e-Babak, SE Iran. International Journal of Remote Sensing. https://doi.org/10.1080/01431160701422239

    Article  Google Scholar 

  • Tangestani, M. H., Jaffari, L., Vincent, R. K., & Sridhar, B. B. M. (2011). Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: A case study from Neyriz ophiolite, SW Iran. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2011.04.023

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, meiduk area, kerman, iran). Canadian Journal of Remote Sensing. https://doi.org/10.1080/07038992.2001.10854931

    Article  Google Scholar 

  • Tözün, K. A., & Özyavaş, A. (2022). Automatic detection of geological lineaments in central Turkey based on test image analysis using satellite data. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.02.026

    Article  Google Scholar 

  • Traore, M., Çan, T., & Tekin, S. (2020). discriminatiοn of irοn deposits using feature οriented principal cοmpοnent selectiοn and band ratiο methοds: Eastern Taurus/Turkey. International Journal of Environment and Geoinformatics. https://doi.org/10.30897/ijegeo.673143

    Article  Google Scholar 

  • Tüysüz, N. (1995). Study of ore minerals and textures for understanding of ore formation in Lahanos (Espiye-Giresun) massive sulfide deposit. Geosound, 26, 79–92.

    Google Scholar 

  • Unal, E., Gokce, A., & Harris, C. (2009). Microthermometric and O- and H-isotope characteristics of the mineralizing fluid in the Akguney copper-lead-zinc deposit, NE Turkey. International Geology Review. https://doi.org/10.1080/00206810802674287

    Article  Google Scholar 

  • Url. (2017). (https://earthobservatory.nasa.gov/blogs/earthmatters/2017/06/13/how-to-pan-sharpen-landsat-imagery/).

  • van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., & Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • van der Meer, F. (2004). Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2003.09.001

    Article  Google Scholar 

  • Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2014.01.009

    Article  Google Scholar 

  • Velosky, J. C., Stern, R. J., & Johnson, P. R. (2003). Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 123(2–4), 235–247.

    Article  Google Scholar 

  • Xiong, Y., Khan, S. D., Mahmood, K., & Sisson, V. B. (2011). Lithological mapping of Bela ophiolite with remote-sensing data. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2010.489069

    Article  Google Scholar 

  • Yang, M., Ren, G., Han, L., Yi, H., & Gao, T. (2018). Detection of Pb – Zn mineralization zones in west Kunlun using Landsat 8 and ASTER remote sensing data. Journal of Applied Remote Sensing, 12(2). https://doi.org/10.1117/1.JRS.12.026018.Downloaded.

  • Yigit, O. (2009). Mineral deposits of Turkey in relation to tethyan metallogeny: Implications for future mineral exploration. Economic Geology. https://doi.org/10.2113/gsecongeo.104.1.19

    Article  Google Scholar 

  • Yılmaz Şahin, S., Güngör, Y., & Boztuǧ, D. (2004). Comparative petrogenetic investigation of composite Kac¸kar Batholith granitoids in Eastern Pontide magmatic arc—Northern Turkey. Earth, Planets and Space, 56, 429–446.

    Article  Google Scholar 

  • Yousefi, T., Aliyari, F., Abedini, A., & Calagari, A. A. (2018). Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: A case study from Zarshuran Carlin-type gold deposit, NW Iran. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3822-x

    Article  Google Scholar 

  • Zhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., & Bie, X. (2016). Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry cu-au deposit, Tibetan Plateau, China. Remote Sensing. https://doi.org/10.3390/rs8110890

    Article  Google Scholar 

Download references

Acknowledgements

The Research Foundation of Cumhuriyet University supported this study (Project No: M-754). I am grateful to anonymous reviewers for their constructive suggestions. Many thanks to Dr. S.P. Aggarwal and Dr. Rajesh V.J. for their delicate editorial process management. I am indebted to Chaimaa Et-Takaouy for correcting the English of the manuscript.

Funding

The author declares that field surveys were completed by supporting The Research Foundation of Sivas Cumhuriyet University supported this study (Project No: M-754). Laboratory studies were carried out in the Departments of Geological and Geomatics Engineering, Sivas Cumhuriyet University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Canbaz.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canbaz, O. Application of Spectral Analysis and Image Processing Methods to Discriminate Hydrothermal Alteration Minerals Around the Tutakdağı (Şebinkarahisar-Giresun) Lead–Zinc Deposits, Northeastern Turkey. J Indian Soc Remote Sens 51, 2019–2039 (2023). https://doi.org/10.1007/s12524-023-01742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01742-9

Keywords

Navigation