Skip to main content

Advertisement

Log in

Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: a case study from Zarshuran Carlin-type gold deposit, NW Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat-8 data were integrated with geological data to map lithologic units, lineament features, hydrothermal alteration zones, and distribution of Fe3+-bearing minerals in the Zarshuran Carlin-type gold deposit. The dominant hydrothermal alterations related to the gold mineralization in the study area, consist of argillic, alunite, silicified, and decalcified alterations of carbonate host rocks. The alteration assemblages are accompanied by ferric iron minerals such as jarosite and hematite. The red-green-blue (RGB) combination of bands 5, 2, and 1 of the ASTER sensor provides excellent criteria for the separation of the host rock lithologic boundaries, particularly for the Oligo-Miocene andesitic volcanic rocks covering the vast parts of the study area. The ASTER lithologic map derived from RGB combination of bands 5, 2, and 1 is represented by a set of lineaments in which both the thrust and normal faults were enhanced. The band ratios obtained by the Landsat-8 and the ASTER datasets have been effectively used to delineate the alteration halos characterized by kaolinite, alunite, quartz, and ferric iron minerals both in regional and local (the Zarshuran gold mine) scales. In addition, methods such as the principal component analysis (PCA) and the selective principal component analysis (Crosta) were exerted on the ASTER data to identify the hydrothermal alteration zones. The spectral angle mapper (SAM) algorithm using the ASTER data could better differentiate the various alteration (e.g., argillic, alunite, and silicified) zones existing in the study area. The matched filtering (MF) technique processed on the Landsat-8 data was applied to characterize the ferric iron minerals (jarosite and hematite) and separate the hydrothermal alteration zones as well. The integration and combination of various image processing techniques indicated that the alteration zones at Zarshuran are affiliated with normal faults within the carbonate host rocks and can be used for prospection mapping purposes in regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21(5):847–859

    Article  Google Scholar 

  • Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2016) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan anti atlas. Adv Space Res 60:2355–2367. https://doi.org/10.1016/j.asr.2017.09.006

    Article  Google Scholar 

  • Alavi M, Hajian J, Amidi M, Bolourchi H (1982) Geology of Takab-Saein-Qaleh, 1:250000, Report No. 50, Geol Surv Iran

  • Alonso-Contes CA (2011) Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain: Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico. Master's Thesis, Michigan Technological University

  • Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56(2–3):75–82

    Article  Google Scholar 

  • Amer R, Kusky T, El Mezayen A (2012) Remote sensing detection of gold related alteration zones in Um Rus area, central Eastern Desert of Egypt. Adv Space Res 49(1):121–134

    Article  Google Scholar 

  • Arehart GB (1996) Characteristics and origins of sediment-hosted disseminated gold deposits: a review. Ore Geol Rev 11:383–403

    Article  Google Scholar 

  • Asadi HH, Voncken JHL, Hale M (1999) Invisible gold at Zarshuran, Iran. Econ Geol 94(8):1367–1374

    Article  Google Scholar 

  • Asadi HH, Voncken JHL, Kühnel RA, Hale M (2000) Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, Northwest Iran. Mineral Deposita 35(7):656–671

    Article  Google Scholar 

  • Ayoobi I, Tangestani MH (2017) Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain. Int J Appl Earth Obs Geoinf 62:1–7

    Article  Google Scholar 

  • Babakhani A, Ghalamghash J (1990) Geological map of Iran, 1:100,000 series sheet Takht-e-Soleiman. Geol Survey Iran, Tehran

  • Bedini E (2011) Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv. Space Res 47:60–73

    Article  Google Scholar 

  • Bishop JL, Murad E (2005) The visible and infrared spectral properties of jarosite and alunite. Am Mineral 90:1100–1107

    Article  Google Scholar 

  • Borengasser M, Hungate WS, Watkins R (2007) Hyperspectral remote sensing: principles and applications. Crc press, Boca Raton 128 p

    Google Scholar 

  • Chavez PS Jr (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:459–479

    Article  Google Scholar 

  • Cline JS, Hofstra AH, Muntean JL, Tosdal RM, Hickey KA (2005) Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models, in Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP, eds., Economic Geology One Hundredth Anniversary Volume. Econ Geol 100:451–484

  • Crosta AP, Sabine C, Taranik JV (1998) Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sens Environ 65:309–319

    Article  Google Scholar 

  • Crosta AP, Souza-Filho CR, Azevedo F et al (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24(21):4233–4240

    Article  Google Scholar 

  • Daliran F (2008) The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, NW Iran-hydrothermal alteration and mineralisation. MineraliumDeposita 43:383–404

    Google Scholar 

  • Di Tommaso ID, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32(1–2):275–290

    Article  Google Scholar 

  • Galvão LS, Almeida-Filho R, Vitorello Í (2005) Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: evaluation in a tropical savannah environment. Int J Appl Earth Obs Geoinf 7(2):107–114

    Article  Google Scholar 

  • Geological Survey of Iran (1999) Geological map of Iran 1:100,000 series. Takht-e-Soleyman, Sheet 5463, Takht-e-Soleyman

  • Gharieb AGN (2010) Rock discrimination using spectral analysis techniques of remote sensing data, Egypt: A case study. Fifth International Conference on the Geology of the Tethys Realm, South Valley University 297–306

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Honarmand M, Ranjbar H, Moezifar Z (2004) Integration and analysis of airborne geophysics, remote sensing and geochemical data of SarCheshmah area, using directed principal component analysis. Explor Mining Geol 11(1–4):43–48

    Google Scholar 

  • Hung LQ, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. In SPIE Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, edited by Manfred Ehlers, Ulrich Michel, Proc. of SPIE Vol. 5983, 59830T, 0277-786X/05/$15, p 1–12. https://doi.org/10.1117/12.627699

  • Kalinowski A, Oliver S (2004) ASTER mineral index processing. Remote Sensing Application Geoscience Australia. Australian Government Geoscience Website: http://www.ga.gov.au/image_cache/GA7833.pdf

  • Kenea NH (1997) Improved geological mapping using Landsat TM Data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. International Journal of Remote Sensing 18(6):1233–1244

    Article  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JB et al (1993) The Spectral Image Processing System (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environment 44(2–3):145–163

    Article  Google Scholar 

  • Kuehn CA, Rose AR (1992) Geology and geochemistry of wall rock alteration at the Carlin gold deposit, Nevada. Econ Geol 87:17–36

    Article  Google Scholar 

  • Laben CA, Brower BV (2000) Process for Enhancing the Spatial Resolution of Multispectral Imagery using Pan-Sharpening. U.S. Patent 6 011 875

  • Liu L, Zhuang DF, Zhou J (2011) Alteration mineral mapping using masking and Crosta technique for mineral exploration in mid-vegetated areas: a case study in Areletuobie, Xinjiang (China). Int J Remote Sens 32(7):1931–1944

    Article  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and logical operator algorithms. Geosphere 2(3):161–186

    Article  Google Scholar 

  • Mars JC, Rowan LC (2010) pectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens Environment 114(9):2011–2025

    Article  Google Scholar 

  • Maurer T (2013) How to pan-sharpen images using the gram-Schmidt pan-sharpen method—a recipe. In: International archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-1/W1. ISPRS Hannover workshop, Hannover, pp 21–24

    Google Scholar 

  • Mehrabi B, Yardley BWD, Cann JR (1999) Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. MineraliumDeposita 34:673–696

    Google Scholar 

  • Mitchell JJ, Glenn NF (2009) Subpixel abundance estimates in mixture-tuned matched filtering classifications of leafy spurge (Euphorbia esula L.). Int J Remote Sens 30:6099–6119

    Article  Google Scholar 

  • Moghtaderi A, Moore F, Mohammadzadeh A (2007) The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the ChadormaluPaleocrater, Bafq region, Central Iran. J Asian Earth Sci 30(2):238–252

    Article  Google Scholar 

  • Mohajer G, Parsaie H, Fallah N, Ma'dani F (1989) Mercury exploration in the SaeinDez-Takab. IIMRA, Tehran (in persian) 68p

    Google Scholar 

  • Mohajjel M, Fergusson CL (2014) Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int Geol Rev 56:263–287

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Moore F, Rastmanesh F, Asadi H (2008) Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-West Iran, from ASTER data. Int J Remote Sens 29(10):2851–2867

    Article  Google Scholar 

  • Mundt J, Streutker D, Glenn N (2007) Partial unmixing of hyperspectral imagery: theory and methods. In Proceedings of the American Society for Photogrammetry and Remote Sensing, Annual Conference Tampa, Florida, USA 12p

  • Nabavi MH (1976) An introduction to the geology of Iran. Geological Survey of Iran (in Persian), Tehran, 110p

  • Noda S, Yamaguchi Y (2017) Estimation of surface iron oxide abundance with suppression of grain size and topography effects. Ore Geol Rev 83:312–320

    Article  Google Scholar 

  • Novak ID, Soulakellis N (2000) Identifying geomorphic features using Landsat-5/TM data processing techniques on Lesvos, Greece. Geomorphology 34:101–109

    Article  Google Scholar 

  • Pour BA (2018) Regional geology mapping using satellite-based remote sensing approach in northern Victoria land, Antarctica. Polar Sci 16:23–46

    Article  Google Scholar 

  • Pour BA, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42(6):1309–1323

    Article  Google Scholar 

  • Pour BA, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9

    Article  Google Scholar 

  • Pour BA, Hashim M, Park Y, Hong IK (2017a) Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International 32:1–26

    Article  Google Scholar 

  • Pour BA, Hashim M, Park Y, Hong IK (2017b) Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: north-eastern Graham Land, Antarctic Peninsula. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2017.07.018

  • Pour BA, Park Y, Park T-YS, Hong JK, Hashim M, Woo J, Ayoobi I (2018) Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int 33:1–32

    Article  Google Scholar 

  • Rajendran S, Nasir S (2017) Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geol Rev 88:317–335

    Article  Google Scholar 

  • Ranjbar H, Honarmand M (2004) Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the central Iranian Volcanic Belt, using fuzzy classification. Int J Remote Sens 25(21):4729–4741

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the mountain pass, California area using Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data. Remote Sens Environ 84(3):350–366

    Article  Google Scholar 

  • Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42(3):522–535

    Article  Google Scholar 

  • Rowan LC, Mars JC, Simpson CJ (2005) Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced Spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 99(1–2):105–126

    Article  Google Scholar 

  • Ruiz-Armenta JR, Prol-Ledesma RM (1998) Techniques for enhancing the spectral response of hydrothermal alteration minerals in thematic mapper images of Central Mexico. Int J Remote Sens 19(10):1981–2000

    Article  Google Scholar 

  • Safari M, Maghsodi A, Pour BA (2017) Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int 32:1–16

    Article  Google Scholar 

  • Salisbury JW, Walter LS (1989) Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J Geophys Res 94(B7):9192–9202

    Article  Google Scholar 

  • Samimi M (1992) Recognisance and preliminary exploration in the Zarshuran area. Tehran, Kavoshgaran Engineering Consultant (in Persian) 47 p

    Google Scholar 

  • Tangestani MH, Moore F (2001) Comparison of three principal component analysis techniques to porphyry copper alteration mapping, a case study in Meiduk area, Kerman, Iran. Can J Remote Sens 27:176–182

    Article  Google Scholar 

  • Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. Int J Remote Sens 29(10):2833–2850

    Article  Google Scholar 

  • Tangestani MH, Jaffari L, Vincent RK (2011) Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: a case study from Neyriz ophiolite, SW Iran. Remote Sens Environ 115(9):2243–2254

    Article  Google Scholar 

  • Van der Meer F, Vazquez-Torres M, Van Dijk PM (1997) Spectral characterization of ophiolite lithologies in the Troodos ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits. Int J Remote Sens 18:1245–1257

    Article  Google Scholar 

  • Xiong Y, Khan SD, Mahmood K, Sisson VB (2011) Lithological mapping of Bela ophiolite with remote-sensing data. Int J Remote Sens 32(16):4641–4658

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced Spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36:1062–1071

    Article  Google Scholar 

  • Yamaguchi Y, Fujisada H, Tsu H, Sato I, Watanabe H, Kato M, Kudoh M, Kahle AB, Pniel M (2001) ASTER early image evaluation. Adv Space Res 28(1):69–76

    Article  Google Scholar 

  • Zhang X, Pazner M, Duke N (2007) Lithological and mineral information extraction for gold exploration using ASTER data in the South Chocolate Mountains, California. ISPRS J Photogramm Remote Sens 62(4):271–282

    Article  Google Scholar 

  • Zhang Z, He G, Wang X (2010) A practical DOS model-based atmospheric correction algorithm. Int J Remote Sens 31:2837–2852

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the many personnel of the Zarshuran Mine particularly to Eng. M. Yeganli for giving us generous assistance, permitting us to have access and sample the available diamond drill cores, and providing us with great quantities of valuable analytical data. Gratitude is further expressed to Prof. Abdullah M. Al-Amri Editor-in-Chief, Wilfried Bauer Associate Editor, and two anonymous reviewers for reviewing the manuscript and making critical comments and valuable suggestions.

Funding

The authors would like to acknowledge the financial support provided by the Iranian Mines and Mining Industries Development and Renovation Organization (IMIDRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhang Aliyari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, T., Aliyari, F., Abedini, A. et al. Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: a case study from Zarshuran Carlin-type gold deposit, NW Iran. Arab J Geosci 11, 482 (2018). https://doi.org/10.1007/s12517-018-3822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3822-x

Keywords

Navigation