Skip to main content
Log in

Assessment of left-ventricular diastolic function in pediatric intensive-care patients: a review of parameters and indications compared with those for adults

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The incidence of diastolic heart failure has increased over time. The evaluation of left-ventricular diastolic function is complex, ongoing, and remains poorly performed in pediatric intensive-care patients. This study aimed to review the literature and to provide an update on the evaluation of left-ventricular diastolic function in adults and children in intensive care.

Data sources

We searched data from PubMed/Medline. Thirty-two studies were included. Four pragmatic questions were identified: (1) What is the physiopathology of diastolic dysfunction? (2) Which tools are required to evaluate diastolic function? (3) What are the echocardiographic criteria needed to evaluate diastolic function? (4) When should diastolic function be evaluated in pediatric intensive care?

Results

Early diastole allows characterization of relaxation, whereas compliance assessments and filling pressures are evaluated during late diastole. The evolution of diastolic function differs between adults and children. Unlike in adults, decreased compliance occurs at the same time as delayed relaxation in children. Diastolic function can be evaluated by Doppler echocardiography. The echocardiographic criteria for ventricular relaxation include the E wave, E/A wave ratio, and isovolumic relaxation time. Ventricular compliance can be assessed by the E/e’ wave ratio, atrial volume, and Ap wave duration during pulmonary vein flow. In adult intensive-care patients, the E/e’ ratio can be used as an index of tolerance for volume expansion in septic patients and to adjust the inotropic support.

Conclusion

Clinical studies would allow some of these parameters to be validated for use in children in intensive care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu CM, Lin H, Yang H, Kong SL, Zhang Q, Lee SWL. Progression of systolic abnormalities in patients with isolated diastolic heart failure and diastolic dysfunction. Circulation. 2002;105:1195–201.

    PubMed  Google Scholar 

  2. Clarkson P, Wheeldon NM, Macdonald TM. Left ventricular diastolic dysfunction. Q J Med. 1994;87:143–8.

    CAS  PubMed  Google Scholar 

  3. Gaasch WH. Diagnosis and treatment of heart failure based on left ventricular systolic or diastolic dysfunction. JAMA. 1994;271:1276–80.

    CAS  PubMed  Google Scholar 

  4. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    CAS  PubMed  Google Scholar 

  5. Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis. 2005;47:320–32.

    PubMed  Google Scholar 

  6. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    CAS  PubMed  Google Scholar 

  7. Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H. Heart failure with preserved ejection fraction in children: hormonal imbalance between aldosterone and brain natriuretic peptide. Circ J Off J. 2013;77:2375–82.

    Google Scholar 

  8. Greenstein YY, Mayo PH. Evaluation of left ventricular diastolic function by the intensivist. Chest. 2018;153:723–32.

    PubMed  Google Scholar 

  9. Tissot C, Singh Y, Sekarski N. Echocardiographic evaluation of ventricular function-for the neonatologist and pediatric intensivist. Front Pediatr. 2018;6:79.

    PubMed  PubMed Central  Google Scholar 

  10. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.

    PubMed  Google Scholar 

  11. Senni M, Tribouilloy CM, Rodeheffer RJ, Jacobsen SJ, Evans JM, Bailey KR. Congestive heart failure in the community: a study of all incident cases in Olmsted County, Minnesota, in 1991. Circulation. 1998;98:2282–9.

    CAS  PubMed  Google Scholar 

  12. Vignon P, Goarin JP, editors. Échocardiographie-doppler en réanimation, anesthésie et médicine d’urgence. Paris: Elsevier; 2002.

    Google Scholar 

  13. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    Google Scholar 

  14. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988;12:426–40.

    CAS  PubMed  Google Scholar 

  15. Mawad W, Friedberg MK. The continuing challenge of evaluating diastolic function by echocardiography in children: developing concepts and newer modalities. Curr Opin Cardiol. 2017;32:93–100.

    PubMed  Google Scholar 

  16. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    PubMed  Google Scholar 

  17. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47:742–8.

    CAS  PubMed  Google Scholar 

  18. Dragulescu A, Mertens L, Friedberg MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging. 2013;6:254–61.

    PubMed  Google Scholar 

  19. Vasan RS, Levy D. Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation. 2000;101:2118–211.

    CAS  PubMed  Google Scholar 

  20. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105:1387–93.

    PubMed  Google Scholar 

  21. Khouri SJ, Maly GT, Suh DD, Walsh TE. A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr. 2004;17:290–7.

    PubMed  Google Scholar 

  22. European Study Group on Diastolic Heart Failure. How to diagnose diastolic heart failure. Eur Heart J. 1998;19:990–1003.

    Google Scholar 

  23. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2006;23:465–95.

    Google Scholar 

  24. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:626.

    Google Scholar 

  25. Sluysmans T, Colan S. Structural measurements and adjustment for growth; chapter 5 in: Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. 2nd Edition. Chichester, West Sussex; 2009.

  26. Pettersen MD, Du W, Skeens ME, Humes RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr. 2008;21:922–34.

    PubMed  Google Scholar 

  27. O’Leary PW, Durongpisitkul K, Cordes TM, Bailey KR, Hagler DJ, Tajik J, et al. Diastolic ventricular function in children: a Doppler echocardiographic study establishing normal values and predictors of increased ventricular end-diastolic pressure. Mayo Clin Proc. 1998;73:616–28.

    PubMed  Google Scholar 

  28. Ezon DS, Maskatia SA, Sexson-Tejtel K, Dreyer WJ, Jeewa A, Denfield SW. Tissue doppler imaging measures correlate poorly with left ventricular filling pressures in pediatric cardiomyopathy. Congenit Heart Dis. 2015;10:203–9.

    Google Scholar 

  29. Masutani S, Saiki H, Kurishima C, Kuwata S, Tamura M, Senzaki H. Assessment of ventricular relaxation and stiffness using early diastolic mitral annular and inflow velocities in pediatric patients with heart disease. Heart Vessels. 2014;29:825–33.

    PubMed  Google Scholar 

  30. Courtois M, Vered Z, Barzilai B, Ricciotti NA, Pérez JE, Ludbrook PA. The transmitral pressure-flow velocity relation. Effect of abrupt preload reduction. Circulation. 1988;78:1459–68.

    CAS  PubMed  Google Scholar 

  31. Courtois M, Kovács SJ, Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation. 1998;78:661–71.

    Google Scholar 

  32. Friedberg MK, Margossian R, Lu M, Mercer-Rosa L, Henderson HT, Nutting A, et al. Systolic-diastolic functional coupling in healthy children and in those with dilated cardiomyopathy. J Appl Physiol Bethesda. 2016;120:1301–18.

    Google Scholar 

  33. Wang J, Buergler JM, Veerasamy K, Ashton YP, Nagueh SF. Delayed untwisting: the mechanistic link between dynamic obstruction and exercise tolerance in patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2009;54:1326–34.

    PubMed  Google Scholar 

  34. Haileselassie B, Su E, Pozios I, Thompson R, Abraham T. Strain echocardiography parameters correlate with disease severity in children and infants with sepsis. Pediatr Crit Care Med. 2016;17:383–90.

    PubMed  PubMed Central  Google Scholar 

  35. Levy PT, Machefsky A, Sanchez AA, Patel MD, Rogal S, Fowler S, et al. Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2016;29:209–25.

    PubMed  Google Scholar 

  36. Giannuzzi P, Imparato A, Temporelli PL, de Vito F, Silva PL, Scapellato F, et al. Doppler-derived mitral deceleration time of early filling as a strong predictor of pulmonary capillary wedge pressure in postinfarction patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 1994;23:1630–7.

    CAS  PubMed  Google Scholar 

  37. Dokainish H, Zoghbi WA, Lakkis NM, Al-Bakshy F, Dhir M, Quinones MA, et al. Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation. 2004;109:2432–9.

    PubMed  Google Scholar 

  38. Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH 3rd, Zoghbi WA, Quiñones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99:254–61.

    CAS  PubMed  Google Scholar 

  39. Boussuges A, Blanc P, Molenat F, Burnet H, Habib G, Sainty JM. Evaluation of left ventricular filling pressure by transthoracic Doppler echocardiography in the intensive care unit. Crit Care Med. 2002;30:362–7.

    PubMed  Google Scholar 

  40. Vignon P, AitHssain A, François B, Preux PM, Pichon N, Clavel M, et al. Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care 12;2008:R18.

  41. Sankar J, Das RR, Jain A, Dewangan S, Khilnani P, Yadav D, et al. Prevalence and outcome of diastolic dysfunction in children with fluid refractory septic shock–a prospective observational study. Pediatr Crit Care Med. 2014;15:370–8.

    Google Scholar 

  42. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med. 1987;5:923–9.

    Google Scholar 

  43. Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med. 2015;41:1004–133.

    PubMed  Google Scholar 

  44. Mahjoub Y, Benoit-Fallet H, Airapetian N, Lorne E, Levrard M, Seydi AA, et al. Improvement of left ventricular relaxation as assessed by tissue Doppler imaging in fluid-responsive critically ill septic patients. Intensive Care Med. 2012;38:1461–70.

    PubMed  Google Scholar 

  45. Clancy DJ, Slama M, Huang S, Scully T, McLean AS, Orde SR. Detecting impaired myocardial relaxation in sepsis with a novel tissue Doppler parameter (septal e’/s’). Crit Care Lond Engl. 2017;21:175.

    Google Scholar 

  46. Clancy DJ, Scully T, Slama M, Huang S, McLean AS, Orde SR. Application of updated guidelines on diastolic dysfunction in patients with severe sepsis and septic shock. Ann Intensive Care. 2017;7:121.

    PubMed  PubMed Central  Google Scholar 

  47. Raj S, Killinger JS, Gonzalez JA, Lopez L. Myocardial dysfunction in pediatric septic shock. J Pediatr. 2014;164:72–7.

    PubMed  Google Scholar 

  48. Williams FZ, Sachdeva R, Travers CD, Walson KH, Hebbar KB. Characterization of myocardial dysfunction in fluid- and catecholamine-refractory pediatric septic shock and its clinical significance. J Intensive Care Med. 2019;34:17–25.

    PubMed  Google Scholar 

  49. Harada K, Tamura M, Toyono M, Yasuoka K. Effect of dobutamine on a Doppler echocardiographic index of combined systolic and diastolic performance. Pediatr Cardiol. 2002;23:613–7.

    CAS  PubMed  Google Scholar 

  50. Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.

    PubMed  Google Scholar 

  51. Monnet X, Teboul JL. Dysfonction cardiaque gauche lors du sevrage de la ventilation mécanique. Réanimation. 2006;15:124–30.

    Google Scholar 

  52. Marcelino P, Fernandes AP, Marum S, Ribeiro JP. The influence of cardiac diastole on weaning from mechanical ventilation. Rev Port Cardiol Orgão Of Soc Port Cardiol Port J Cardiol Off J Port Soc Cardiol. 2002;21:849–57.

    Google Scholar 

  53. Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, et al. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37:1696–701.

    PubMed  Google Scholar 

  54. Bader FM, Islam N, Mehta NA, Worthen N, Ishihara S, Stehlik J, et al. Noninvasive diagnosis of cardiac allograft rejection using echocardiography indices of systolic and diastolic function. Transplant Proc. 2011;43:3877–81.

    CAS  PubMed  Google Scholar 

  55. Strigl S, Hardy R, Glickstein JS, Hsu DT, Addonizio LJ, Lamour JM, et al. Tissue Doppler-derived diastolic myocardial velocities are abnormal in pediatric cardiac transplant recipients in the absence of endomyocardial rejection. Pediatr Cardiol. 2008;29:749–54.

    PubMed  Google Scholar 

  56. Yoldaş T, Yeşil Ş, Karademir S, Şahin G, Örün UA, Doğan V, et al. Evaluation of long-term cardiac side effects of anthracycline chemotherapy by conventional and non-conventional echocardiographic methods in childhood cancer survivors. Cardiol Young. 2019;29:904–9.

    PubMed  Google Scholar 

  57. Shigemitsu S, Takahashi K, Yazaki K, Kobayashi M, Yamada M, Akimoto K, et al. New insight into the intraventricular pressure gradient as a sensitive indicator of diastolic cardiac dysfunction in patients with childhood cancer after anthracycline therapy. Heart Vessels. 2019;34:992–1001.

    PubMed  Google Scholar 

Download references

Funding

No financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Contributions

Dr. MR and Dr. AB conceptualized the study, conducted the initial analyses, drafted the initial manuscript, reviewed, and revised the manuscript; Dr. JS and Dr. JBB reviewed and revised the manuscript; Pr. FG reviewed and revised the manuscript; Prof. SL conceptualized the study, reviewed and revised the manuscript. All authors have approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Morgan Recher.

Ethics declarations

Ethical approval

Not required for this review article.

Conflict of interest

The authors have no conflicts of interest relevant to this article to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recher, M., Botte, A., Soquet, J. et al. Assessment of left-ventricular diastolic function in pediatric intensive-care patients: a review of parameters and indications compared with those for adults. World J Pediatr 17, 21–30 (2021). https://doi.org/10.1007/s12519-020-00369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-020-00369-x

Keywords

Navigation