Skip to main content

Advertisement

Log in

Geochemistry of shales in the Dalbuing Formation, Arunachal Pradesh, NE India: implications for provenance, tectonic setting, paleoweathering, and paleoredox conditions

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

We report here the geochemical data of the shales in the Dalbuing Formation of Arunachal Pradesh, NE India. The study infers the provenance, tectonic settings, paleoweathering, paleoredox, and paleoclimatic condition of the region. The results of rare earth elements (REE), Th/U (6.83, i.e., >3.8) and Th/Sc (0.85, i.e., close to 1) ratio, as well as chemical index of alteration (CIA) (82.29%), suggest that sediments were derived from old upper continental crust reflecting felsic provenance composition. The (SiO2)adj value (59.31%, i.e., between 35 and 63%) based discriminant function multi-dimensional diagram for low silica clastic sediments reveal sedimentation in the rift (passive continental margin) and collision (active continental margin) tectonic settings. The values of index of compositional variability (ICV) (0.74, i.e., <1) indicate that the sediments are recycled or intensely weathered first cycle sediments. Furthermore, the major oxides SiO2 and Al2O3+K2O+Na2O-based bivariate plot and relatively similar concentrations of clay minerals illite (30.73%), chlorite (30.72%), and kaolinite (33.39%) divulged that sedimentation took place under both arid and warm-humid conditions showing an increasing trend of chemical maturity of the shales. The Ce anomaly (Ce/Ce*) values (1.00, i.e., ≥1), U/Th (0.15, i.e., <0.75), and Ni/Co (2.63, i.e., <5) ratios of the sediments indicate their sedimentation under oxic conditions. The chemical maturity of the sediments and shifting of paleoclimate from arid to warm-humid are interpreted as a tectonically driven mechanism owing to paleolatitudinal change of the area and emergence of Himalayan orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acharyya SK (1998) Thrust tectonics and evolution of domes and the syntaxis in Eastern Himalaya, India. J Nepal Geol Soc 18:1–17

    Google Scholar 

  • Adatte T, Stinnesbeck W and Keller G (1996) Lithostratigraphic and mineralogic correlations of near K/T boundary sediments in northeastern Mexico: implications for origin and nature of deposition. In: Ryder G, Fastovsky D,Gartner S (Eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper 307:211–226

  • Al-Juboury AI, Hussain SH, Al-Lhaebi SH (2021) Geochemistry and mineralogy of the Silurian Akkas Formation, Iraqi western desert: implications for palaeoweathering, provenance and tectonic setting. Arab J Geosci 14(9):1–23

    Article  Google Scholar 

  • Amedjoe CG, Gawu SKY, Aseidu DK, Nude PM (2018) Geochemical compositions of Neoproterozoic to Lower Palaeozoic (?) shales and siltstones in the Volta Basin (Ghana): Constraints on provenance and tectonic setting. Sediment Geol 368:114–131

    Article  Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, México. Revista Mexicana de Ciencias Geológicas 26:764–782

  • Armstrong-Altrin JS, Verma SP (2005a) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sediment Geol 177:115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005b) Critical Evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment Geol 177:115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam formation, Southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74(2):285–297

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013) Geochemistry of Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Compt Rendus Geosci 345(4):185–202

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 64:199–216

    Article  Google Scholar 

  • Bhat MI, Ghosh SK (2001) Geochemistry of the 2.51 Ga old Rampur Group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Res 108:1–16

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91(6):611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Burg J-P, Davy P, Nievergelt P, Oberli F, Seward D, Diao Z, Meier M (1997) Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova 9(2):53–56. https://doi.org/10.1111/j.1365-3121.1997.tb00001.x

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104(1–4):1–37. https://doi.org/10.1016/0009-2541(93)90140-E

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59(14):2919–2940

    Article  Google Scholar 

  • Cullers RL (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem Geol 70:335–348

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical Geology 123(1–4):107–131. https://doi.org/10.1016/0009-2541(95)00050-V

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res 104(1-2):77–93

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, Southeastern Russia. Precambrian Res 117:157–183

    Article  Google Scholar 

  • Dera G, Pellenard P, Neige P, Deconinck JF, Pucéat E, Dommergues JL (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol 271:39–51

    Article  Google Scholar 

  • Dianto A, Subehi L, Ridwansyah I, Hantoro WS (2019) Clay minerals in the sediments as useful paleoclimate proxy: Lake Sentarum case study, West Kalimantan, Indonesia. In IOP Conference Series: Earth and Environmental. Science. 311(1):012036 1-6

    Google Scholar 

  • Dickinson WR (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. New Perspectives in Basin. Analysis:3–25

  • Dypvik H (1984) Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geoll Mag 121(5):489–504

    Article  Google Scholar 

  • Fagel N, Boski T, Likhoshway L, Oberhaensli H (2003) Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeogr Palaeoclimatol Palaeoecol 193(1):159–179

    Article  Google Scholar 

  • Fatima S, Khan MS (2012) Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution. Int Geol Rev 54:1113–1144

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10):921–924

    Article  Google Scholar 

  • Feng R, Kerrich R (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstones belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Acta 54:1061–1081

    Article  Google Scholar 

  • Ferdous N, Farazi AH (2016) Geochemistry of Tertiary sandstones from southwest Sarawak, Malaysia: Implications for provenance and tectonic setting. Acta Geochim 35(3):294–308

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Article  Google Scholar 

  • Godet A, Bodin S, Adatte T, Föllmi KB (2008) Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian). Cretac Res 29(5-6):830–847

    Article  Google Scholar 

  • Hajalilou B, Ashrafi N, Sharifi J (2016) Mineralogy and Geochemistry of the Upper Paleocene Shales from Goouydaraq-Goouradaraq, East Azarbaijan, NW Iran. Open J Geol 6:1096–1117

    Article  Google Scholar 

  • Harnois L (1988) The CIW Index: A New Chemical Index of Weathering. Sediment Geol 55:319–322

    Article  Google Scholar 

  • Heine C, Müller RD, Gaina C, Clift P, Kuhnt W, Wang P, Hayes D (2004) Reconstructing the lost eastern Tethys ocean basin: convergence history of the SE Asian margin and marine gateways. Continent-Ocean Interactions Within East Asian Marginal Seas. Geophys Monogr Ser 149:37–54

    Google Scholar 

  • Herron MM  (1988) Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research Vol. 58. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

  • Hofman A, Bolhar R, Dirks P, Jelsma H (2003) The geochemistry of Archean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine versus subaerial weathering. Geochim Cosmochim Acta 67(3):421–440

    Article  Google Scholar 

  • Jones B, Manning DA (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1-4):111–129

    Article  Google Scholar 

  • Kaiser HF (1961) A note on Guttman’s lower bound for the number of common factors. Br J Stat Psychol 14:1–2

    Article  Google Scholar 

  • Kent DV, Muttoni G (2008) Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci 105(42):16065–16070

    Article  Google Scholar 

  • Khan T, Khan MS (2015) Clastic rock geochemistry of Punargarh basin, trans-Aravalli region, NW Indian shield: Implications for paleoweathering, provenance, and tectonic setting. Arab J Geosci 8:3621–3644

    Article  Google Scholar 

  • Krishna AK, Murthy NN, Govil PK (2007) Multielement analysis of soils by wavelength-dispersive X-ray flouresence spectrometry. At Spectrosc 28:202–214

    Google Scholar 

  • Kumar G (1997) Geology of Arunachal Pradesh. Geological Society of India, Bangalore, p 217

    Google Scholar 

  • Licht A, Van Cappelle M, Abels HA et al (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513(7519):501–506

    Article  Google Scholar 

  • Madhavaraju J, Ramasamy S, Ruffell A, Mohan SP (2002) Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): implication for sediment source and Palaeoclimates at the K/T boundary. Cretac Res 23:53–163

    Article  Google Scholar 

  • Madhavaraju J, Ramírez-Montoya E, Monreal R et al (2016) Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geológicas 33(1):34–48

    Google Scholar 

  • McCulloch MT, Wasserburg GJ (1978) Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200:1003–1011

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol Soc Am Spec Pap 284:21–40

    Google Scholar 

  • McLennan SM, Hemming SR, Taylor SR, Eriksson KA (1995) Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotope evidence from metasedimentary rocks, southwestern North America. Geochim Cosmochim Acta 59(6):1153–1177

    Article  Google Scholar 

  • Mudoi NM, Gogoi B, Dehingia P (2021) Sandstone geochemistry of Dalbuing Formation, Yinkiong Group, Arunachal Pradesh, NE India: implications for provenance, paleoweathering and tectonic settings. J Geol Soc India 97:297–307. https://doi.org/10.1007/s12594-021-1681-7

    Article  Google Scholar 

  • Nagarajan R, Armstrong-Altrin JS, Kessler FL and Jong J (2017) Chapter 7-Petrological and Geochemical Constraints on Provenance, Paleoweathering, and Tectonic Setting of Clastic Sediments From the Neogene Lambir and Sibuti Formations, Northwest Borneo. In Mazumder R (Ed.), Sediment Provenance, Elsevier 123–153

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551

    Article  Google Scholar 

  • Nance WB, Taylor SR (1977) Rare earth element patterns and crustal evolution-II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochim et Cosmochim Acta 41:225–231

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and Sandstone. Springer, Berlin

    Book  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360(6405):647–652

    Article  Google Scholar 

  • Rimmer SM (2004) Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem Geol 206(3-4):373–391

    Article  Google Scholar 

  • Roddaz M, Viers J, Brusset S, Baby P, Herail G (2006) Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–65

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signature of sandstones-mudstones suites determination using discrimination function analysis of major element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Ryan KA, Williams DM (2007) Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chem Geol 242(1-2):103–125

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP, Purohit KK (1998) A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya. J Geol Soc India 52:603–606

    Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant SS, Subramanyam KSV and Krishna GV (2014) High precision multielement analysis on geological samples by HR-ICP-MS. Proccedings of 28th ISMAS Symposium and Workshop on Mass Spectrometry 181-184

  • Seton M, Müller RD, Zahirovic S et al (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113(3-4):212–270

    Article  Google Scholar 

  • Singh S (1993) Geology and tectonics of the eastern syntaxial bend, Arunachal Himalaya. J Himal Geol 4:149–163

    Google Scholar 

  • Singh T, Singh P (1983) Late Early Eocene larger foraminiferids from Siang district, Arunachal Pradesh, India and their geological significance. Geosci J IV(2):141–156

    Google Scholar 

  • Singh AK, Singh RKB (2012) Petrogenetic evolution of the felsic and mafic volcanic suite in the Siang window of Eastern Himalaya,Northeast India. Geosci Front 3(5):613–634

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196(1-2):17–33

    Article  Google Scholar 

  • Sun X, Wang P (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222(3-4):181–222

    Article  Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial Sandstone Composition and Palaeoclimate Framework Mineralogy. J Sediment Petrol 56:329–345

    Google Scholar 

  • Tawfik HA, Ghandour IM, Maejima W, Armstrong-Altrin JS, Abdel-Hameed AMT (2015) Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geol Mag 154:1–23

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Chesner CA (2003) Melt inclusions in zircon. Rev Mineral Geochem 53(1):63–87

    Article  Google Scholar 

  • Tripathi C, Mamgain VD (1986) The larger foraminifera from the Yingkiong Formation (Early Eocene) of East Siang district, Arunachal Pradesh. J Palaeontol Soc India 31:76–84

    Google Scholar 

  • Tripathi C, Gaur RK, Singh S (1981) A note on the occurrence of Nummulites in East Siang district,Arunachal Pradesh. Him.Geo. 35(1):36–38

    Google Scholar 

  • Van de Kamp PC, Leake BE (1985) Petrography and geochemistry of feldsphatic and mafic sediments of the northeastern pacific margin. Trans R Soc Edinburg Earth Sci 76:411–449

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–133

    Article  Google Scholar 

  • Von Eynatten H (2004) Statistical modelling of compositional trends in sediments. Sediment Geol 172:251–268

    Google Scholar 

  • Wadia DN (1931) The syntaxis of Northwest Himalaya:its rocks, tectonics and orogeny. Records, Geol Surv India 6:189–220

    Google Scholar 

  • Wani H, Mondal MEA (2011) Evaluation of provenance, tectonic setting, and paleoredox conditions of the Mesoproterozoic-Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales. Lithosphere 3(2):143–154

    Article  Google Scholar 

  • Westermann S, Duchamp-Alphonse S, Fiet N, Fleitmann D, Matera V, Adatte T, Follmi KB (2013) Paleoenvironmental changes during the Valanginian: new insights from variations in phosphorous contents and bulk-and clay mineralogies in th western Tethys. Paleogeogr Paleoclimatol Paleoecol 392:196–208

    Article  Google Scholar 

  • Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: A new approach. Geology 16(5):452. https://doi.org/10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2

  • Wronkiewicz DJ, Condie KC (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim Cosmochim Acta 51(9):2401–2416

    Article  Google Scholar 

  • Wronkiewicz DJ, Condie KC (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta 53(7):1537–1549. https://doi.org/10.1016/0016-7037(89)90236-6

    Article  Google Scholar 

  • Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sed Res 68(3):448–455

    Article  Google Scholar 

  • Yuretich R, Melles M, Sarata B, Grobe H (1999) Clay minerals in the sediments of Lake Baikal: a useful climate proxy. J Sediment Res 69(3):588–596

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head, Department of Geological Sciences, Gauhati University, Assam, India, for allowing us to avail the departmental facilities and the Department of Science and Technology (DST), Govt. of India, New Delhi for supporting infrastructural facility of the department in the form of Grant-in-aid General under 2016-2017 FIST Program (Ref. C.Dy.No.5862/IFD/2016-2017) that availed for this study.  We gratefully acknowledge the Director, Wadia Institute of Himalayan Geology, Dehradun, for major oxide analysis results. The authors also acknowledge the Director of CSIR-National Geophysical Research Institute (NGRI), Hyderabad, for giving laboratory facilities for major oxides, trace elements as well as REE analysis. The authors would like to acknowledge Dr. M. Ram Mohan, Senior Principal Scientist, Geochemistry Division, NGRI, Hyderabad, for all his encouragement and valuable suggestions through intellectual discussions during the stay at NGRI for geochemical analysis. The authors also acknowledge the Head, Department of Instrumentation & USIC, Gauhati University, Guwahati, Assam, for providing the Sophisticated Analytical Instrument Facility (SAIF) for the XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Gogoi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudoi, N.M., Gogoi, B. & Dehingia, P. Geochemistry of shales in the Dalbuing Formation, Arunachal Pradesh, NE India: implications for provenance, tectonic setting, paleoweathering, and paleoredox conditions. Arab J Geosci 15, 486 (2022). https://doi.org/10.1007/s12517-022-09636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09636-9

Keywords

Navigation