Skip to main content

Advertisement

Log in

Oceanic anoxic events in the Earth’s geological history and signature of such event in the Paleocene-Eocene Himalayan foreland basin sediment records of NW Himalaya, India

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Oceanic anoxic events (OAEs) represent changes in global carbon cycle as well as biogeochemical cycles and are robust recorders of major changes brought in the ocean-atmosphere system of the Earth. In the present study, a comprehensive compilation of well-documented OAEs in the Earth’s geological history indicates that compared to the plethora of OAE studies in different parts of the world, the Indian part lacks sufficient such geological studies. Also, it has been observed that despite the variety of causes referred by researchers for the occurrence of OAEs based on various geological proxies, their development tends to cluster in particular periods having unique geological settings under specific climate conditions of the Earth. OAEs usually coincided with Earth’s greenhouse condition and in marine to shallow marine depositional settings, which have been associated with rapid alternating phases of transgression and regression. The Paleocene-Eocene thermal maximum (PETM) at the Paleocene-Eocene boundary comprises the last OAE of the Phanerozoic Eon and the only identified OAE in the Cenozoic. The deposition of Himalayan foreland basin sediments during Paleocene-Eocene time coincides with the India-Eurasia collision and PETM. Characteristic litho sections of Paleocene-Eocene HFB shallow marine sediments represented by the Subathu Formation occur in and around the Jammu region (of the Ramngar sub-basin) and Simla region (of the Subathu sub-basin) of NW Himalaya (India) and have been explored for OAE records. Besides the fact that deposition of these sediments coincides with PETM, there are many other reasons which suggest possible representation of these as records of OAE. For example, these sediments show OAE specific sedimentary and biostratigraphic facies associations which are characteristic of alternating transgressive-regressive successions. The base of these early HFB sediments consists of sideritic ironstone, phosphorite, and black shale association indicating commencement of basinal sedimentation under euxinic, shallow marine conditions. Though these Paleocene-Eocene HFB sediments comprising dominantly black to gray-green shales are regionally extensive, however, these occur in discontinuous patches all along the HFB and also greatly vary in thickness due to the tectonic complexity of the Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharyya SK (2007) Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas–a review. J Asian Earth Sci 31(1):1–17

    Article  Google Scholar 

  • Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206(3-4):289–318

    Article  Google Scholar 

  • Al-Sagri KEA (2015) Linking the timing of deposition and organic matter richness of the Gulneri formation of Northern Iraq to the global oceanic anoxic event 2 (OAE 2): implications to better constrain the depositional models of Iraqi's oil source beds and their timing of deposition. Iraq J Sci 56(3A):2007–2023

    Google Scholar 

  • Al-Suwaidi AH, Angelozzi GN, Baudin F, Damborenea SE, Hesselbo SP, Jenkyns HC, Manceñido MO, Riccardi AC (2010) First record of the early Toarcian oceanic anoxic event from the southern hemisphere, Neuquén Basin, Argentina. J Geol Soc 167(4):633–636

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108

    Article  Google Scholar 

  • Andjić G, Baumgartner PO, Baumgartner-Mora C (2018) Rapid vertical motions and formation of volcanic arc gaps: plateau collision recorded in the forearc geological evolution (Costa Rica margin). Basin Res 30(5):863–894

    Article  Google Scholar 

  • Arora A, Banerjee S, Dutta S (2015) Black shale in late Jurassic Jhuran formation of Kutch: possible indicator of oceanic anoxic event. J Geol Soc India 85(3):265–278

    Article  Google Scholar 

  • Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanisms and environments of ancient deposits. Annu Rev Earth Planet Sci 22(1):499–551

    Article  Google Scholar 

  • Arthur MA, and Sageman BB, (2005). Sea level control on source rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western interior basin of North America, and the Late Devonian Appalachian basin: SEPM special publication No. 82. in Harris NB (ed.), the deposition of organic carbon-rich sediments: models, mechanisms and consequences: SEPM special publication No. 82.

  • Arthur MA, Schlanger SO (1979) Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields. AAPG Bull 63(6):870–885

    Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. The carbon cycle and atmospheric CO2: natural variations. Archean Present 32:504–529

    Google Scholar 

  • Arthur MA, Schlanger ST, Jenkyns HC (1987) The Cenomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Geol Soc, London, Special Publications 26(1):401–420

    Article  Google Scholar 

  • Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO (1990) In: Ginsburg RN, Beaudoin B (eds) Stratigraphy, geochemistry, and paleoceanography of organic carbon rich Cretaceous sequences, in Cretaceous resources, events and rhythms, NATO ASI Ser, 304th edn. Kluwer Acad, Dordrecht, pp 75–119

    Google Scholar 

  • Barclay J, Herd RA, Edwards BR, Christopher T, Kiddle EJ, Plail M, Donovan A (2010) Caught in the act: implications for the increasing abundance of mafic enclaves during the recent eruptive episodes of the Soufrière Hills volcano, Montserrat. Geophys Res Lett 37(19)

  • Bailey TR, Rosenthal Y, McArthur JM, van de Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: a possible link to the genesis of an oceanic anoxic event, earth planet. Sci Lett 212:307–320

    Google Scholar 

  • Bailey TR, Rosenthal Y, McArthur JM, Van de Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet Sci Lett 212(3-4):307–320

    Article  Google Scholar 

  • Banerjee S, Dutta S, Paikaray S, Mann U (2006) Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). J Earth Syst Sci 115(1):37–47

    Article  Google Scholar 

  • Bansal U, Pande K, Banerjee S, Nagendra R, Jagadeesan KC (2019) The timing of oceanic anoxic events in the Cretaceous succession of Cauvery basin: constraints from 40Ar/39Ar ages of glauconite in the Karai Shale Formation. Geol J 54(1):308–315

    Article  Google Scholar 

  • Bansal U, Banerjee S, Ruidas DK, Pande K (2018) Origin and geochemical characterization of Maastrichtian glauconites in the, Central India. J Palaeogeogr 7:99–116

    Article  Google Scholar 

  • Bartlett R, Elrick M, Wheeley JR, Polyak V, Desrochers A, Asmerom Y (2018) Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proc Natl Acad Sci 115(23):5896–5901

    Article  Google Scholar 

  • Barash MS (2012) Causes and prime causes of mass biotic extinctions in the Phanerozoic. In Doklady earth sciences (Vol. 445, no. 2, 925). Springer Nature BV

    Google Scholar 

  • Barron EJ (1987) Eocene equator-to-pole surface ocean temperatures: a significant climate problem? Paleoceanography 2(6):729–739

    Article  Google Scholar 

  • Bastos LPH, Pereira E, da Costa Cavalcante D, Alferes CLF, de Menezes CJ, Rodrigues R (2020) Expression of Early Cretaceous global anoxic events in Northeastern Brazilian basins. Cretac Res 110:104390

    Article  Google Scholar 

  • Baudin F (2005) A Late Hauterivian short-lived anoxic event in the Mediterranean Tethys: the ‘Faraoni event’. ComptesRendus Geosci 337(16):1532–1540

    Google Scholar 

  • Becker RT (1993) Anoxia, eustatic changes, and upper Devonian to lowermost Carboniferous global ammonoid diversity. Syst Assoc Special 47:115e163

    Google Scholar 

  • Becker RT, Kirchgasser WT (2007) Devonian events and correlations. The. Geol Soc Spec Publ 278:1e280

    Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291(5508):1530–1533

    Article  Google Scholar 

  • Beil S, Kuhnt W, Holbourn A, Scholz F, Oxmann J, Wallmann K, Lorenzen J, Aquit M, Chellai EH (2020) Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks. Clim Past 16(2):757–782

    Article  Google Scholar 

  • Bernoulli D (1972) North Atlantic and Mediterranean Mesozoic facies: a comparison. Initial Reports of the Deep sea Drilling Project 11:801–871

  • Bernoulli D, Peters T (1970) Traces of rhyolitic-trachytic volcanism in the upper Jurassic of the Southern Alps. Eclogae Geol Helvetiae 63(2):609–621

    Google Scholar 

  • Bertle RJ, Suttner TJ (2005) New biostratigraphic data for the Chikkim formation (Cretaceous, Tethyan Himalaya, India). Cretac Res 26(6):882–894

    Article  Google Scholar 

  • Bhargava ON (2008) An updated introduction to the Spiti geology. J Paleontol Soc India 53(2):113–129

    Google Scholar 

  • Bhargava ON and Bassi UK, (1998). Geology of Spiti-Kinnaur Himachal Himalaya (124). Geological Survey of India.

  • Biswas SK (1971) The miliolite rocks of Kutch and Kathiawar (western India). Sediment Geol 5(2):147–164

    Article  Google Scholar 

  • Biswas SK (1977) Mesozoic rock-stratigraphy of Kutch, Gujarat. Q J Geol Mineral Metall Soc India 49:1–51

    Google Scholar 

  • Biswas SK, 1980. Structure of Kutch-Kathiawar Region, Western India. In Proc. 3rd Indian Geological Congress, Pune (255-272).

  • Biswas SK (1981) Basin framework, paleo-environment and depositional history of the Mesozoic sediments of Kutch basin, western India. Q J Geol Min Metall Soc India 53:56–85

    Google Scholar 

  • Bodin S, Godet A, Matera V, Steinmann P, Vermeulen J, Gardin S, Adatte T, Coccioni R, Föllmi KB (2007) Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late HauterivianFaraoni oceanic anoxic event. Int J Earth Sci 96(2):327–341

    Article  Google Scholar 

  • Bodin S, Mattioli E, Fröhlich S, Marshall JD, Boutib L, Lahsini S, Redfern J (2010) Toarcian carbon isotope shifts and nutrient changes from the northern margin of Gondwana (high atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 297(2):377–390

  • Bodin S, Mattioli E, Fröhlich S, Marshall JD, Boutib L, Lahsini S, Redfern J (2010) Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 297(2):377–390

    Article  Google Scholar 

  • Bohaty SM, Zachos JC, Sluijs A, Gibbs SJ, Brinkhuis H, Bralower TJ (2008) North American continental margin records of the Paleocene–Eocene thermal maximum: implications for global carbon and hydrological cycling. Paleoceanography 23:2217

    Google Scholar 

  • Bomou B, Adatte T, Tantawy AA, Mort H, Fleitmann D, Huang Y, Föllmi KB (2013) The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 369:466–481

    Article  Google Scholar 

  • Bonacina G, Sanfilippo A, Zana S, Bosino A, Massara EP, Viaggi P et al (2021) Geochemical evidence for local variability in redox and depositional conditions in a deep-water bonarelli equivalent section from southern tethys (fontanavalloneto section, southern italy). Ofioliti 46(1):43–62

    Google Scholar 

  • Bornemann A, Norris RD, Friedrich O, Eckmann B, Schouten S, Sinninghe Damsté JS, Vogel J, Hofmann P, Wagner T (2008) Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319:189–192

    Article  Google Scholar 

  • Bottini C, Mutterlose J (2012) Integrated stratigraphy of Early Aptian black shales in the Boreal Realm: calcareous nannofossil and stable isotope evidence for global and regional processes. Newsl Stratigr 45(2):115–137

    Article  Google Scholar 

  • Bottini C, Cohen AS, Erba E, Jenkyns HC, Coe AL (2012) Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology 40(7):583–586

    Article  Google Scholar 

  • Bottjer DJ, Droser ML, Sheehan PM, McGhee GR and Allmon WD, 2001. The ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Evol Paleoecol: The ecological context of macroevolutionary change, 1748.

  • Boulila S, Hinnov LA (2017) A review of tempo and scale of the early Jurassic Toarcian OAE: implications for carbon cycle and sea level variations. Newsl Stratigr 50(4):363–389

    Article  Google Scholar 

  • Bralower TJ, Fullagar PD, Paul CK, Dwyer GS, Leckie RM (1997) Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geol Soc Am Bull 109:1421–1442

    Article  Google Scholar 

  • Bralower TJ, Sliter WV, Arthur MA, Leckie RM, Allard D, Schlanger SO (1993) Dysoxic/anoxic episodes in the Aptian-Albian (early cretaceous). The Mesozoic Pacific: geology, tectonics, and volcanism 77:5–37

    Google Scholar 

  • Brassell SC (2009) Steryl ethers in a Valanginian claystone: molecular evidence for cooler waters in the Central Pacific during the early cretaceous? Palaeogeogr Palaeoclimatol Palaeoecol 282(1–4):45–57

    Article  Google Scholar 

  • Bratton JF (1999) Clathrate eustasy: methane hydrate melting as a mechanism for geologically rapid sea-level fall. Geology 27(10):915–918

    Article  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS (2018) Declining oxygen in the global ocean and coastal waters. Science 359:6371

    Article  Google Scholar 

  • Brumsack HJ (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol 232(2):344–361

    Article  Google Scholar 

  • Buggisch W (1991a) The global Frasnian-FamennianKellwasser Event. Geol Rundsch 80(1):49–72

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321(5891):949–952

    Article  Google Scholar 

  • Carter A, Najman Y, Bahroudi A, Bown P, Garzanti E, Lawrence RD (2010) Locating earliest records of orogenesis in western Himalaya: evidence from Paleogene sediments in the Iranian Makran region and Pakistan Katawaz basin. Geology 38(9):807–810

    Article  Google Scholar 

  • Cecca F, Fözy I, Wierzbowski A (1993) Ammonites et paléoécologie: Étude quantitative d'associations du Tithonien inférieur de la Téthys occidentale. Geobios 26:39–48

    Article  Google Scholar 

  • Cecca F, Marini A, Pallini G, Baudin F, Begouen V (1994) A guide-level of the uppermost Hauterivian (Lower Cretaceous) in the pelagic succession of Umbria-Marche Apennines (Central Italy): the FaraoniLevel. RivistaItaliana di paleontologia e Stratigrafia 99(for 1993):551–568

    Google Scholar 

  • Cecca F, Galeotti S, Coccioni R and Erba E, (1996). the equivalent of the “faraonilevel”(uppermost hauterian, lower cretaceous) recorded in the eastern paret of trento plateau (venetian southern alps, italy).RivistaItaliana di Paleontologia e Stratigrafia, 102(3).

  • Chaudhri RS (1976) Paleocene-Eocene sequence of northwestern Himalayas-a product of rhythmic sedimentation. Journal of Geological Society of India (Online archive from Vol 1 to Vol 78) 17(1):67–72

    Google Scholar 

  • Cheng K, Elrick M, Romaniello SJ (2020) Early Mississippian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: evidence from uranium isotopes recorded in marine limestone. Geology 48(4):363–367

    Article  Google Scholar 

  • Chiarenza AA, Farnsworth A, Mannion PD, Lunt DJ, Valdes PJ, Morgan JV, Allison PA (2020) Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc Natl Acad Sci 117(29):17084–17093

    Article  Google Scholar 

  • Coccioni A, Nesci O, Tramontana M, Wezel FC, Moretti E (1987) Descrizione di un livello- guida Radiolaritico-bituminosoittioliticoalla base dellemarne a fucoidinell 'Appenninoumbro- marchigiano. BollettinodellaSocietaGeologica Italiana 106(1):183–192

    Google Scholar 

  • Coccioni R, Bancalà G, Catanzarit R, Fornaciari E, Frontalini F, Giusberti L, Jovane L, Luciani V, Savian J, Sprovieri M (2012) An integrated stratigraphic record of the Palaeocene–lower Eocene at Gubbio (Italy): new insights into the early Palaeogene hyperthermals and carbon isotope excursions. Terra Nova 24(5):380–386

    Article  Google Scholar 

  • Cohen AS, Coe AL, Harding SM, Schwark L (2004) Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32(2):157–160

    Article  Google Scholar 

  • Cohen AS, Coe AL, Kemp DB (2007) The Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J Geol Soc 164(6):1093–1108

    Article  Google Scholar 

  • Coleman DS, Glazner AF (1997) The sierra crest magmatic event: rapid formation of juvenile crust during the late cretaceous in California. Int Geol Rev 39(9):768–787

    Article  Google Scholar 

  • Colman, A. S., and Holland, H. D., 2000. The global diagenetic flux of phosphorus from marine sediments to the oceans: redox sensitivity and the control of atmospheric oxygen levels.

  • Courtillot V (2002) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press

    Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalt events. Compt Rendus Geosci 335(1):113–140

    Article  Google Scholar 

  • Cronin TM, Hayo K, Thunell RC, Dwyer GS, Saenger C, Willard DA (2010) The medieval climate anomaly and little ice age in Chesapeake Bay and the North Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 297(2):299–310

    Article  Google Scholar 

  • De Wit MJ, Ghosh JG, de Villiers S, Rakotosolofo N, Alexander J, Tripathi A, Looy C (2002) Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem recovery. J Geol 110(2):227–240

    Article  Google Scholar 

  • Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2(1):9–31

    Article  Google Scholar 

  • Denise B, Levin Lisa A, Andreas O, Marilaure G, Chavez Francisco P, Conley Daniel J, Véronique G, Denis G, Dimitri G, Kirsten I, Jacinto Gil S (2018) Declining oxygen in the global ocean and coastal waters. Science 359(6371):10–1126

    Google Scholar 

  • Dera G, Donnadieu Y (2012) Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27(2):PA2211

    Article  Google Scholar 

  • Dickens GR (2001) The potential volume of oceanic methane hydrates with variable external conditions. Org Geochem 32(10):1179–1193

    Article  Google Scholar 

  • Dickens GR (2011) Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim Past 7(3):831–846

    Article  Google Scholar 

  • Dickens GR, O'Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10(6):965–971

    Article  Google Scholar 

  • Du Vivier AD, Selby D, Sageman BB, Jarvis I, Gröcke DR, Voigt S (2014) Marine 187 Os/188 Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during oceanic anoxic event 2. Earth Planet Sci Lett 389:23–33

    Article  Google Scholar 

  • Duchamp-Alphonse S, Fiet N, Adatte T, Pagel M (2011) Climate and sea-level variations along the northwestern Tethyan margin during the Valanginian C-isotope excursion: mineralogical evidence from the Vocontian Basin (SE France). Palaeogeogr Palaeoclimatol Palaeoecol 302(3-4):243–254

    Article  Google Scholar 

  • Dumitrescu M, Brassell SC, Schouten S, Hopmans EC, Damsté JSS (2006) Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology 34(10):833–836

    Article  Google Scholar 

  • Dumitrescu M, Brassell SC (2006) Compositional and isotopic characteristics of organic matter for the early Aptian oceanic anoxic event at Shatsky Rise, ODP Leg 198. Palaeogeogr Palaeoclimatol Palaeoecol 235:168– 191. https://doi.org/10.1016/j.palaeo.2005.09.028. CrossrefWeb of Science®Google Scholar

  • Dutta D, Mukherjee S (2019) Opposite shear senses: geneses, global occurrences, numerical simulations and a case study from the Indian western Himalaya. J Struct Geol 126:357–392

    Article  Google Scholar 

  • Duque-Botero F, Maurrasse FJR, Hickey-Vargas R, Melinte MC, Jaffe R, López-Oliva JG (2009) Microspheroid accumulations and geochemical characteristics of a Cenomanian–Turonian anoxic basin: the record of the Indidura formation, NE México: geologic problem solving with microfossils: a volume in honor of Garry D. Jones, Society of Economic Paleontologists and Mineralogists. Special Publ 93:171–186

    Google Scholar 

  • El Asmi, K., Soussi, M., Ismail, H.B., Hantzpergue, P., Enay, R., and Mangold, C., 2003. Mesozoic sedimentary record of Southern Tunisia and sea-lavel change–the Late Callovian Ghomrassen carbonate platform. In 1st EAGE North African/Mediterranean Petroleum & Geosciences Conference & Exhibition (pp. cp-8). European Association of Geoscientists & Engineers.

  • Eldrett JS, Minisini D, Bergman SC (2014) Decoupling of the carbon cycle during ocean anoxic event 2. Geology 42(7):567–570

    Article  Google Scholar 

  • Erbacher J, Friedrich O, Wilson PA, Birch H, Mutterlose J (2005) Stable organic carbon isotope stratigraphy across oceanic anoxic event 2 of demerara rise, western tropical Atlantic. Geochem Geophys Geosyst 6(6)

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52(1):85–106

    Article  Google Scholar 

  • Erba E, Bartolini A, Larson RL (2004) ValanginianWeissert oceanic anoxic event. Geology 32(2):149–152

    Article  Google Scholar 

  • Erbacher J, Huber BT, Norris RD, Markey M (2001) Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409(6818):325–327

    Article  Google Scholar 

  • Elrick M, Berkyová S, Klapper G, Sharp Z, Joachimski M, Frýda J (2009) Stratigraphic and oxygen isotope evidence for my-scale glaciation driving eustasy in the early–middle Devonian greenhouse world. Palaeogeogr Palaeoclimatol Palaeoecol 276(1–4):170–181

    Article  Google Scholar 

  • Ernst RE, Youbi N (2017) How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52

    Article  Google Scholar 

  • Fantasia A, Föllmi KB, Adatte T, Bernárdez E, Spangenberg JE, Mattioli E (2018) The Toarcian oceanic anoxic event in southwestern Gondwana: an example from the Andean basin, northern Chile. J Geol Soc 175(6):883–902

    Article  Google Scholar 

  • Farrimond P, Talbot HM, Watson DF, Schulz LK, Wilhelms A (2004) Methylhopanoids: molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim Cosmochim Acta 68(19):3873–3882

    Article  Google Scholar 

  • Fauré P, Peybernès B (1986) Biozonation par Ammonites et essai de corrélation des séries réduites liasiques de la Dorsale Tunisiennë. Bull de la Soc d'histoire Nat Toulouse 122:41–49

    Google Scholar 

  • Fleurance S, Cuney M, Malartre F, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219

    Article  Google Scholar 

  • Forster A, Schouten S, Baas M, SinningheDamsté JS (2007) Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35(10):919–922

    Article  Google Scholar 

  • Főzy I, Janssen NM, Price GD, Knauer J, Pálfy J (2010) Integrated isotope and biostratigraphy of a lower Cretaceous section from the Bakony Mountains (Transdanubian Range, Hungary): a new Tethyan record of the Weissert event. Cretac Res 31(6):525–545

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic (286)

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem Cycles 6(2):185–198

    Article  Google Scholar 

  • French KL, Sepúlveda J, Trabucho-Alexandre J, Gröcke DR, Summons RE (2014) Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. Earth Planet Sci Lett 390:116–127

    Article  Google Scholar 

  • Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to late cretaceous oceans—a 55 my record of Earth's temperature and carbon cycle. Geology 40(2):107–110

    Article  Google Scholar 

  • Gale AS, Jenkyns HC, Kennedy WJ, Corfield RM (1993) Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. J Geol Soc 150(1):29–32

    Article  Google Scholar 

  • Gale AS, Kennedy WJ, Voigt S, Walaszczyk I (2005) Stratigraphy of the upper Cenomanian–Lower Turonian chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretac Res 26(3):460–487

    Article  Google Scholar 

  • Ganguly S, Tiwari S, Bhan U, Mittal S, Rai S, Osta EF (2015) Melting of sea ice inexplicable for recent global eustatic sea level rise. J Earth Sci Clim Change 6(1):1

    Google Scholar 

  • Godet A, Hfaiedh R, Arnaud-Vanneau A, Zghal I, Arnaud H, Ouali J (2014) Aptian palaeoclimates and identification of an OAE1a equivalent in shallow marine environments of the southern Tethyan margin: evidence from Southern Tunisia (Bir Oum Ali section, Northern Chott Chain). Cretac Res 48:110–129

    Article  Google Scholar 

  • Griesbach CL (1889) Geology of the central Himalayas. Memoirs Geol Survey India 23:1–232

    Google Scholar 

  • Gröcke DR, Hesselbo SP, Jenkyns HC (1999) Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change. Geology 27(2):155–158

    Article  Google Scholar 

  • Gröcke DR, Hori RS, Trabucho-Alexandre J, Kemp DB, Schwark L (2011) An open ocean record of the Toarcian oceanic anoxic event. Solid Earth 2(2):245–257

    Article  Google Scholar 

  • Hallam A (1994) Strontium isotope profiles of Triassic-Jurassic boundary sections in England and Austria. Geology 22(12):1079–1082

    Article  Google Scholar 

  • Hallam A, Bradshaw MJ (1979) Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. J Geol Soc 136(2):157–164

    Article  Google Scholar 

  • Haq BU (1998) Natural gas hydrates: searching for the long-term climatic and slope-stability records. Geol Soc Lond, Spec Publ 137(1):303–318

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235(4793):1156–1167

    Article  Google Scholar 

  • Harries PJ, Little CT (1999) The early Toarcian (early Jurassic) and the Cenomanian–Turonian (late cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr Palaeoclimatol Palaeoecol 154(1–2):39–66

    Article  Google Scholar 

  • Hasegawa T (2003) Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: increased atmospheric pCO2-induced climate. J Asian Earth Sci 21(8):849–859

    Article  Google Scholar 

  • Hay WW (1995) Paleoceanography of marine organic-carbon-rich sediments

    Book  Google Scholar 

  • Hays JD, Pitman WC (1973) Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature 246(5427):18–22

    Article  Google Scholar 

  • He W, Shan X, Sun Y, Cao H, Zheng S, Su S, Kang S (2021) The oil shale formation mechanism of the Songliao Basin Nenjiang Formation triggered by marine transgression and oceanic anoxic events 3. Oil Shale 38(2)

  • Heath MN, Cramer BD, Stolfus BM, Barnes GL, Clark RJ, Day JE, Barnett BA, Witzke BJ, Hogancamp NJ, Tassier-Surine S (2021) Chemoautotrophy as the driver of decoupled organic and carbonate carbon isotope records at the onset of the Hangenberg (Devonian-Carboniferous Boundary) oceanic anoxic event. Palaeogeogr Palaeoclimatol Palaeoecol 577:110540

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49(2-3):81–115

    Article  Google Scholar 

  • Hennekam R, Van der Bolt B, van Nes EH, de Lange GJ, Scheffer M, Reichart GJ (2020) Early-warning signals for marine anoxic events. Geophys Res Lett 47(20):e2020GL089183

    Article  Google Scholar 

  • Hermoso M, Le Callonnec L, Minoletti F, Renard M, Hesselbo SP (2009) Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet Sci Lett 277(1):194–203

    Article  Google Scholar 

  • Hermoso M, Minoletti F, Pellenard P (2013) Black shale deposition during Toarcian super-greenhouse driven by sea level. Clim Past 9(6):2703–2712

    Article  Google Scholar 

  • Herrle JO, Pross J, Friedrich O, Köbler P, Hemleben C (2003) Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeogr Palaeoclimatol Palaeoecol 190:399–426

    Article  Google Scholar 

  • Herrle JO, Köbler P, Friedrich O, Erlenkeuser H, Hemleben C (2004) High-resolution carbon isotope records of the Aptian to lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth Planet Sci Lett 218(1-2):149–161

    Article  Google Scholar 

  • Hesselbo SP, Pieńkowski G (2011) Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth Planet Sci Lett 301(1-2):365–372

    Article  Google Scholar 

  • Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406(6794):392

    Article  Google Scholar 

  • Hesselbo SP, Jenkyns HC, Duarte LV, Oliveira LC (2007) Carbon-isotope record of the Early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet Sci Lett 253(3):455–470

    Article  Google Scholar 

  • Heydari E, Hassanzadeh J (2003) Deev Jahi model of the Permian-Triassic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth. Sediment Geol 163(1–2):147–163

    Article  Google Scholar 

  • Heydari E, Hassanzadeh J, Wade WJ, Ghazi AM (2003) Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: part 1–sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 193(3-4):405–423

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2006) Beyond methane: towards a theory for the Paleocene–Eocene thermal maximum. Earth Planet Sci Lett 245(3):523–537 http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.jpg

    Article  Google Scholar 

  • Higgins MB, Robinson RS, Husson JM, Carter SJ, Pearson A (2012) Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+. Proc Natl Acad Sci 109(7):2269–2274

    Article  Google Scholar 

  • Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo Z, A., Jacobsen, S.B. and Boynton, W.V., 1991. Chicxulub crater: a possible cretaceous/tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology, 19(9), 867–871

  • Hu X, Zhao K, Yilmaz IO, Li Y (2012) Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretac Res 38:40–51

    Article  Google Scholar 

  • Hu G, Hu W, Cao J, Yao S, Liu W, Zhou Z (2014) Fluctuation of organic carbon isotopes of the lower Cretaceous in coastal southeastern China: terrestrial response to the oceanic anoxic events (OAE1b). Palaeogeogr Palaeoclimatol Palaeoecol 399:352–362

    Article  Google Scholar 

  • Huang C, Hesselbo SP (2014) Pacing of the Toarcian oceanic anoxic event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res 25(4):1348–1356

    Article  Google Scholar 

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30(2):123–126

    Article  Google Scholar 

  • Hutton T (1841) Geological report on the Valley of the Spiti, and the route from Katghur. J Asiat Soc Bengal 10:198–229

    Google Scholar 

  • Ingall ED, Bustin RM, Van Cappellen P (1993) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim Cosmochim Acta 57(2):303–316

    Article  Google Scholar 

  • Ingram BL, Coccioni R, Montanari A, Richter FM (1994) Strontium isotopic composition of mid-Cretaceous seawater. Science 264(5158):546–550

    Article  Google Scholar 

  • Izumi K, Miyaji T, Tanabe K (2012) Early Toarcian (Early Jurassic) oceanic anoxic event recorded in the shelf deposits in the northwestern Panthalassa: evidence from the Nishinakayama formation in the Toyora area, west Japan. Palaeogeogr Palaeoclimatol Palaeoecol 315:100–108

    Article  Google Scholar 

  • Jain AK, Lal N, Sulemani B, Awasthi AK, Singh S, Kumar R, Kumar D (2009) Detritalzircon fission-track ages from the lower Cenozoic sediments, NW Himalayan foreland basin: clues for exhumation and denudation of the Himalaya during the India-Asia collision. Geol Soc Am Bull 121(3-4):519–535

    Article  Google Scholar 

  • Jahren AH, Arens NC, Sarmiento G, Guerrero J, Amundson R (2001) Terrestrial record of methane hydrate dissociation in the early cretaceous. Geology 29(2):159–162

    Article  Google Scholar 

  • Jarvis IAN, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in late cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 ma). Geol Mag 143(5):561–608

    Article  Google Scholar 

  • Jarvis I, Lignum JS, Gröcke DR, Jenkyns HC, Pearce MA (2011) Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography 26(3):PA3201

    Article  Google Scholar 

  • Jenkyns HC (1980) Cretaceous anoxic events: from continents to oceans. J Geol Soc 137(2):171–188

    Article  Google Scholar 

  • Jenkyns HC (1985) The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geol Rundsch 74(3):505–518

    Article  Google Scholar 

  • Jenkyns, H., 1988. The early Toarcian (Jurassic) anoxic event-stratigraphic, sedimentary, and geochemical evidence. American Journal of Science, 288(2), 101-151

  • Jenkyns HC, (1999).

  • Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philos Trans R Soc London, Ser A 361(1810):1885–1916

    Article  Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11(3):Q03004

    Article  Google Scholar 

  • Jenkyns HC (2018) Transient cooling episodes during Cretaceous oceanic anoxic events with special reference to OAE 1a (Early Aptian). Philos Trans R Soc A Math Phys Eng Sci 376(2130):20170073

    Article  Google Scholar 

  • Jenkyns HC, Clayton CJ (1997) Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44(4):687–706

    Article  Google Scholar 

  • Jenkyns HC, Forster A, Schouten S, Damsté JSS (2004) High temperatures in the Late Cretaceous Artic Ocean. Nature 432(7019):888

    Article  Google Scholar 

  • Jenkyns HC, Dickson AJ, Ruhl M, Boorn SH (2017) Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology 64(1):16–43

    Article  Google Scholar 

  • Jiang G, Sohl LE, Christie-Blick N (2003) Neoproterozoic stratigraphic comparison of the lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications. Geology 31(10):917–920

    Article  Google Scholar 

  • JIN MS, WANG H, QIAO GB, ZHANG SP (2014) The discovery of Heiqia iron mineralization belt in West Kunlun by high resolution remote sensing technology and its geological significance. Northwest Geol 47(4):221–226

    Google Scholar 

  • John CM, BohatyJenkyns HC (1999) Mesozoic anoxic events and palaeoclimate. ZentralblattfürGeologie und Paläontologie 1997(7–9):943–949

    Google Scholar 

  • Jones CE, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301(2):112–149

    Article  Google Scholar 

  • Jones CE, Jenkyns HC, Coe AL, Stephen HP (1994) Strontium isotopic variations in Jurassic and cretaceous seawater. Geochim Cosmochim Acta 58(14):3061–3074

    Article  Google Scholar 

  • Joo YJ, Sageman BB (2014) Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin, USA. J Sediment Res 84(7):529–542

    Article  Google Scholar 

  • Joo YJ, Sageman BB, Hurtgen MT (2020) Data-model comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2. Earth Sci Rev 203:103123

    Article  Google Scholar 

  • Kabanov P (2019) Devonian (c. 388–375 Ma) Horn River Group of Mackenzie Platform (NW Canada) is an open-shelf succession recording oceanic anoxic events. J Geol Soc 176(1):29–45

    Article  Google Scholar 

  • Kabanov P, Jiang C (2020) Photic-zone euxinia and anoxic events in a middle-late Devonian shelfal sea of Panthalassan continental margin, NW Canada: changing paradigm of Devonian Ocean and sea level fluctuations. Glob Planet Chang 188:103153

    Article  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22(8):719–722

    Article  Google Scholar 

  • Kaiho K, Oshima N (2017) Site of asteroid impact changed the history of life on earth: the low probability of mass extinction. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Kaiho K, Oshima N, Adachi K, Adachi Y, Mizukami T, Fujibayashi M, Saito R (2016) Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Karakitsios V, Kafousia N, Tsikos H (2010) A review of oceanic anoxic events as recorded in the Mesozoic sedimentary record of mainland Greece. Hellenic J Geosci 45:123

    Google Scholar 

  • Kassem AA, Sharaf LM, Baghdady AR, El-Naby AA (2020) Cenomanian/Turonian oceanic anoxic event 2 in October oil field, central Gulf of Suez, Egypt. J Afr Earth Sci 165:103817

    Article  Google Scholar 

  • Keller G, Adatte T, Berner Z, Chellai EH, Stueben D (2008) Oceanic events and biotic effects of the Cenomanian-Turonian anoxic event, Tarfaya Basin, Morocco. Cretac Res 29(5–6):976–994

    Article  Google Scholar 

  • Keller G, Adatte T, Berner Z, Chellai EH, Stueben D (2008) Oceanic events and biotic effects of the Cenomanian-Turonian anoxic event, Tarfaya Basin. Morocco Cretaceous Res 29(5-6):976–994

    Article  Google Scholar 

  • Keller G, Nagori ML, Chaudhary M, Reddy AN, Jaiprakash BC, Spangenberg JE, Mateo P, Adatte T (2021) Cenomanian-Turonian sea-level transgression and OAE2 deposition in the Western Narmada Basin, India. Gondwana Res 94:73–86

    Article  Google Scholar 

  • Keller G, Nagori ML, Chaudhary M, Reddy AN, Jaiprakash BC, Spangenberg JE, Mateo P, Adatte T (2021) Cenomanian-Turonian Sea-level transgression and OAE2 deposition in the Western Narmada Basin. India, Gondwana Research

    Book  Google Scholar 

  • Kemp DB, Selby D, Izumi K (2020) Direct coupling between carbon release and weathering during the Toarcian oceanic anoxic event. Geology 48(10):976–980

    Article  Google Scholar 

  • Kennedy LA, Russell JK, Kopylova MG (2002) Mantle shear zones revisited: the connection between the cratons and mantle dynamics. Geology 30(5):419–422

    Article  Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353(6341):225–229

    Article  Google Scholar 

  • Khain VE, Polyakova ID (2010, June) Oceanic anoxic events and global rhythms of endogenic activity during the Phanerozoic history of the Earth. In: In Doklady Earth Sciences, 432, 2 edn. Springer Nature BV, Dordrecht, p 722

    Google Scholar 

  • Khan S, Kroon D, Wadood B, Ahmad S and Zhou X, (2021). Marine depositional signatures of the Aptian oceanic anoxic events in the Eastern Tethys, Lower Indus Basin, Pakistan Australia J Earth Sci 1-17.

  • Kidder DL, Worsley TR (2010) Phanerozoic large igneous provinces (LIPs), HEATT (haline euxinic acidic thermal transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 295(1-2):162–191

    Article  Google Scholar 

  • Klemme HD, Ulmishek GF (1991) Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bull 75(12):1809–1851

    Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative Earth history and Late Permian mass extinction. Science 273(5274):452–457

    Article  Google Scholar 

  • Kokh SN, Sokol EV, Gustaytis MA (2021) Mercury anomaly in Oligocene–Miocene Maykop Group sediments (Caucasus Continental Collision Zone): mercury hosts, distribution, and sources. Minerals 11(7):751

    Article  Google Scholar 

  • Kominz MA, (1984). Oceanic ridge volumes and sea-level change-an error analysis.

  • Krencker FN, Bodin S, Suan G, Heimhofer U, Kabiri L, Immenhauser A (2015) Toarcian extreme warmth led to tropical cyclone intensification. Earth Planet Sci Lett 425:120–130

    Article  Google Scholar 

  • Krencker FN, Lindström S, Bodin S (2019) A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Krishan J, Pathak DB, Pandey B, Ojha JR (2000) Transgressive sediment intervals in the Late Jurassic of Kachchh, India. Geo Res For 6:331–332

    Google Scholar 

  • Krishna J (1983) Callovian – Albian Ammonoid Stratigraphy and Paleobiogeography in the Indian subcontinent with special reference to the Tethys Himalayas. Himal Geol 11:43–72

    Google Scholar 

  • Krishna J (2017) Introduction and Paleogeographic context, previous work, high-resolution scale, magnetochronologic perspective, radiometric scenario, igneous activities, anoxic events and eustatic fluctuations. In: In The Indian Mesozoic Chronicle. Springer, Singapore, pp 1–26

    Chapter  Google Scholar 

  • Krishan JP, Pandey DB, B and Ojha J. R. (2000) Transgressive sediment intervals in the late Jurassic of Kachchh. India GeoRes For 6:331–332

    Google Scholar 

  • Krull ES, Retallack GJ (2000) δ13C depth profiles from paleosols across the Permian-Triassic boundary: evidence for methane release. Geol Soc Am Bull 112(9):1459–1472

    Article  Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161(1):181–198

    Article  Google Scholar 

  • Kuroda J, Ogawa NO, Tanimizu M, Coffin MF, Tokuyama H, Kitazato H, Ohkouchi N (2007) Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2. Earth Planet Sci Lett 256(1-2):211–223

    Article  Google Scholar 

  • Kuroyanagi A, Kawahata H, Ozaki K, Suzuki A, Nishi H, Takashima R (2020) What drove the evolutionary trend of planktic foraminifers during the Cretaceous: oceanic anoxic events (OAEs) directly affected it? Mar Micropaleontol 161:101924

    Article  Google Scholar 

  • Kuypers MM, Blokker P, Erbacher J, Kinkel H, Pancost RD, Schouten S, Damsté JSS (2001) Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293(5527):92–95

    Article  Google Scholar 

  • Kuypers MM, Blokker P, Hopmans EC, Kinkel H, Pancost RD, Schouten S, Damsté JSS (2002) Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeogr Palaeoclimatol Palaeoecol 185(1-2):211–234

    Article  Google Scholar 

  • Kuypers MM, van Breugel Y, Schouten S, Erba E, Damsté JSS (2004) N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32(10):853–856

    Article  Google Scholar 

  • Lakshami KJP, Sudheer Kumar M, Bhalla MS, Rao GVSP (2000) Magnetostratigraphy of Himalayan sediments from Himachal Pradesh. J Indian Geophysical Union 4(2):147–154

    Google Scholar 

  • Lamolda MA, Mao S (1999) The Cenomanian–Turonian boundary event and dinocyst record at Ganuza (northern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 150(1–2):65–82

    Article  Google Scholar 

  • Langsford N, Raimondo T, Jago J (2020) Red crust: evidence for an early Paleozoic oceanic anoxic event. Aust J Earth Sci 67(7):995–1001

    Article  Google Scholar 

  • Weissert H (1989) C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the Early Cretaceous: Surveys in Geophysics (10:1–61)

  • Large RR, Halpin JA, Lounejeva E, Danyushevsky LV, Maslennikov VV, Gregory D, Sack PJ, Haines PW, Long JA, Makoundi C, Stepanov AS (2015) Cycles of nutrient trace elements in the Phanerozoic Ocean. Gondwana Res 28(4):1282–1293

    Article  Google Scholar 

  • Larson RL (1991) Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19(6):547–550

    Article  Google Scholar 

  • Larson RL, PITMAN III, W.C. (1972) World-wide correlation of Mesozoic magnetic anomalies, and its implications. Geol Soc Am Bull 83(12):3645–3662

    Article  Google Scholar 

  • Larson RL, Erba E (1999) Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14(6):663–678

    Article  Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:13-1–13-29

    Article  Google Scholar 

  • Lehmann J, Friedrich O, Von Bargen D, Hemker T (2012) Early Aptian Bay deposits at the southern margin of the Lower Saxony Basin: integrated stratigraphy, palaeoenvironment and OAE 1a. Acta Geol Pol 62(1):35–62

    Google Scholar 

  • Lenniger M, Nøhr-Hansen H, Hills LV, Bjerrum CJ (2014) Arctic black shale formation during Cretaceous oceanic anoxic event 2. Geology 42(9):799–802

    Article  Google Scholar 

  • Li X, Wei Y, Li Y, Zhang C (2016) Carbon isotope records of the early Albian oceanic anoxic event (OAE) 1b from eastern Tethys (southern Tibet, China). Cretac Res 62:109–121

    Article  Google Scholar 

  • Li X, Jenkyns HC, Wang C, Hu X, Chen X, Wei Y, Huang Y, Cui J (2006) Upper cretaceous carbon and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. J Geol Soc 163(2):375–382

    Article  Google Scholar 

  • Li Y-X, Bralower TJ, Montañez IP, Osleger DA, Arthur MA, Bice DM, Herbert TD, Erba E, Premoli Silva I (2008) Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, ∼120 ma), earth planet. Sci Lett 271:88–100

    Google Scholar 

  • Lini A, Weissert H, Erba E (1992) The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4(3):374–384

    Article  Google Scholar 

  • Littler K, Robinson SA, Bown PR, Nederbragt AJ, Pancost RD (2011) High Sea-surface temperatures during the early cretaceous epoch. Nat Geosci 4(3):169–172

    Article  Google Scholar 

  • Lokho K, Tewari VC (2011) Biostratigraphy, Sedimentation and Chemostratigraphy of the Tertiary Neotethys Sediments from the NE Himalaya, India. In Stromatolites: Interaction of Microbes with Sediments (607–630)

  • Lukeneder A, Suttner TJ, Bertle RJ (2013) New ammonoid taxa from the Lower Cretaceous Giumal Formation of the Tethyan Himalaya (northern India). Palaeontology 56(5):991–1028

    Article  Google Scholar 

  • MacLeod KG, Huber BT, Berrocoso ÁJ, Wendler I (2013) A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera. Geology 41(10):1083–1086

    Article  Google Scholar 

  • Mathur NS, Juyal KP (2000) Paleontological evidence for the upheaval history of western Himalaya during the Paleogene. Himal Geol 21(1):109–131

    Google Scholar 

  • Matsumoto R (1995) Causes of the ^ 1^ 3C anomalies of carbonates and a new paradigm 'Gas-Hydrate Hypothesis'. J Geol Soc Jpn 101:902–924

    Article  Google Scholar 

  • Matsumoto A, Kobayashi T (1995) K/Ar age determination of late Quaternary volcanic rocks using the “mass fractionation correction procedure”: application to the younger on take volcano. Central Japan Chem Geol 125(1-2):123–135

    Article  Google Scholar 

  • Matsumoto H, Kuroda J, Coccioni R, Frontalini F, Sakai S, Ogawa NO, Ohkouchi N (2020) Marine Os isotopic evidence for multiple volcanic episodes during Cretaceous oceanic anoxic event 1b. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • McElwain JC, Wade-Murphy J, Hesselbo SP (2005) Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435(7041):479–482

    Article  Google Scholar 

  • McInerney FA, Wing SL (2011) The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Planet Sci 39:489–516

    Article  Google Scholar 

  • Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, Caron M (1998) High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13(5):530–545

    Article  Google Scholar 

  • Millán MI, Weissert HJ, López-Horgue MA (2014) Expression of the Late Aptian cold snaps and the OAE1b in a highly subsiding carbonate platform (Aralar, northern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 411:167–179

    Article  Google Scholar 

  • Miller KG, Wright JD, Browning JV (2005) Visions of ice sheets in a greenhouse world. Mar Geol 217(3–4):215–231

    Article  Google Scholar 

  • Mittal AK, Pandey HC and Singh RR, (2006). Geochemistry of gas seeps from surface shows and wells of the Himalayan foreland basin. In Proceedings of 6th international conference and exposition on petroleum geophysics, Kolkata (235-291).

  • Moiroud M, Martinez M, Deconinck JF, Monna F, Pellenard P, Riquier L, Company M (2012) High-resolution clay mineralogy as a proxy for orbital tuning: example of the Hauterivian–Barremian transition in the Betic Cordillera (SE Spain). Sediment Geol 282:336–346

    Article  Google Scholar 

  • Morford JL, Emerson S (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63(11-12):1735–1750

    Article  Google Scholar 

  • Mort H, Jacquat O, Adatte T, Steinmann P, Föllmi K, Matera V, Berner Z, Stüben D (2007) The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: enhanced productivity and/or better preservation? Cretac Res 28(4):597–612

    Article  Google Scholar 

  • Mukherjee S, Misra AA, Calvès G, Nemčok M (2017) Tectonics of the Deccan large igneous province: an introduction. Geol Soc Lond, Spec Publ 445(1):1–9

    Article  Google Scholar 

  • Muller Karger FE, Varela R, Thunell R, Luerssen R, Hu C, Walsh JJ (2005) The importance of continental margins in the global carbon cycle. Geophys Res Lett 32(1):L01602

    Article  Google Scholar 

  • Nagendra R, Reddy AN (2017) Major geologic events of the Cauvery Basin, India and their correlation with global signatures–a review. J Palaeogeogr 6(1):69–83

    Article  Google Scholar 

  • Najarro M, Rosales I, Moreno-Bedmar JA, de Gea GA, Barrón E, Company M, Delanoy G (2011) High-resolution chemo-and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N Spain): Palaeoceanographic and palaeoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 299(1-2):137–158

    Article  Google Scholar 

  • Nathorst AG (1890) Beitrage zur mesozoischen Flora Japans, vol 57. Denks Math-Nat Cl Kaiser, Akad Wiss, Wien, pp 4–60

    Google Scholar 

  • Navarro-Ramirez JP, Bodin S, Immenhauser A (2016) Ongoing Cenomanian—Turonian heterozoan carbonate production in the neritic settings of Peru. Sediment Geol 331:78–93

    Article  Google Scholar 

  • Norris RD, Huber BT, Self-Trail J (1999) Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake nose, western North Atlantic. Geology 27(5):419–422

    Article  Google Scholar 

  • Nozaki T, Suzuki K, Ravizza G, Kimura JI, Chang Q (2012) A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method. Geostand Geoanal Res 36(2):131–148

    Article  Google Scholar 

  • Ohkouchi Y, Inoue Y (2006) Direct production of L (+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97(13):1554–1562

    Article  Google Scholar 

  • Ohkouchi N, Kawamura K, Kawahata H, Taira A (1997) Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific. Geochim Cosmochim Acta 61(9):1911–1918

    Article  Google Scholar 

  • Ohkouchi N, Kashiyama Y, Kuroda J, Ogawa NO, Kitazato H (2006) The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2. Biogeosciences 3(4):467–478

    Article  Google Scholar 

  • Ohno S, Kadono T, Kurosawa K, Hamura T, Sakaiya T, Shigemori K, Hironaka Y, Sano T, Watari T, Otani K, Matsui T (2014) Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat Geosci 7(4):279–282

    Article  Google Scholar 

  • Owens JD, Lyons TW, Hardisty DS, Lowery CM, Lu Z, Lee B, Jenkyns HC (2017) Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology 64(1):168–185

    Article  Google Scholar 

  • Padden M, Weissert H, de Rafelis M (2001) Evidence for late Jurassic release of methane from gas hydrate. Geology 29(3):223–226

    Article  Google Scholar 

  • Pandey B, Pathak DB (2015) Record of Early Bathonianammonoids from Kachch, India: biostratigraphic and paleobiogeographic implications. J Palaeontol Soc India 60(1):33–44

    Google Scholar 

  • Pandey B, Pathak DB (2016) The possibility of the Oceanic Anoxic Events (OAEs) study in the Indian marine Jurassic-Cretaceous outcrops. J Geol Soc India 87(3):–261

  • Pandey B, Pathak DB, Krishna J (2013) Preliminary remarks on new ammonoid collection from freshly exposed succession of the Spiti Formation between Lidang and Giumal, Spiti Valley, Himachal Himalaya, India. Himal Geol 34(2):124–134

    Google Scholar 

  • Pathak DB (1997) Ammonoid stratigraphy of the Spiti Shale formation in Spiti Himalaya, India. Geol Soc India 50(2):191–200

    Google Scholar 

  • Pathak DB, Krishna J, Pandey B (2011) Differentiation of the significant Late Valanginian (Early Cretaceous) transgressive event in the Spiti Himalaya, India. J Asian Earth Sci 42(6):1226–1231

    Article  Google Scholar 

  • Pearce CR, Cohen AS, Coe AL, Burton KW (2008) Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology 36(3):231–234

    Article  Google Scholar 

  • Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC, Hesselbo SP, Al-Suwaidi AH, Storm MS, Xu W, Ruhl M (2015) Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo–Ferrar Large Igneous Province. Earth Planet Sci Lett 428:267–280

    Article  Google Scholar 

  • Percival LME, Bond DPG, Rakociński M, Marynowski L, Hood A, Adatte T, Spangenberg JE, Föllmi KB (2020) Phosphorus-cycle disturbances during the Late Devonian anoxic events. Glob Planet Chang 184:103070

    Article  Google Scholar 

  • Phelps RM, Kerans C, Da-Gama RO, Jeremiah J, Hull D, Loucks RG (2015) Response and recovery of the Comanche carbonate platform surrounding multiple Cretaceous oceanic anoxic events, northern Gulf of Mexico. Cretac Res 54:117–144

    Article  Google Scholar 

  • Pi DH, Liu CQ, Shields-Zhou GA, Jiang SY (2013) Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: constraints for redox environments and origin of metal enrichments. Precambrian Res 225:218–229

    Article  Google Scholar 

  • Pierazzo E, Hahmann AN, Sloan LC (2003) Chicxulub and climate: radiative perturbations of impact-produced S-bearing gases. Astrobiology 3(1):99–118

    Article  Google Scholar 

  • Pittet B, Suan G, Lenoir F, Duarte LV, Mattioli E (2014) Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the Oceanic Anoxic Event. Sediment Geol 303:1–14

    Article  Google Scholar 

  • Poulsen CJ, Barron EJ, Peterson WH, Wilson PA (1999) A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography 14(6):679–697

    Article  Google Scholar 

  • Poulsen CJ, Barron EJ, Arthur MA, Peterson WH (2001) Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16(6):576–592

    Article  Google Scholar 

  • Pratt, L.M., 1985. Isotopic studies of organic matter and carbonate in rocks of the greenhorn marine cycle

    Book  Google Scholar 

  • Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7(2):107–112

    Article  Google Scholar 

  • Pratt LM and Threlkeld CN, (1984). Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior.

  • Raiverman V (1979) Stratigraphy and facies distribution, Subathu sediments, Simla Hills, northwestern Himalaya. Geo Survey India Misc Publ 41:111–125

    Google Scholar 

  • Raiverman V (2002) Foreland sedimentation in Himalayan tectonic regime. In: A relook at the orogenic process. Bishen Singh Mahendra Pal Singh Publication, Dehradun, p 371p

    Google Scholar 

  • Richiano S (2014) Lower Cretaceous anoxic conditions in the Austral basin, south-western Gondwana, Patagonia Argentina. J S Am Earth Sci 54:37–46

    Article  Google Scholar 

  • Richter FM, Rowley DB, De Paolo DJ (1992) Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett 109(1-2):11–23

    Article  Google Scholar 

  • Rita P, Weis R, Duarte LV and De Baets K, (2020). Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian–Toarcian GSSP (Lusitanian Basin, Portugal). Papers in Palaeontology.

  • Robinson SA, Heimhofer U, Hesselbo SP, Petrizzo MR (2017) Mesozoic climates and oceans–a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology 64(1):1–15

    Article  Google Scholar 

  • Röhl U, Westerhold T, Bralower TJ, and Zachos JC, 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem Geophysics Geosyst 8(12).

  • Royer DL, Pagani M, Beerling DJ (2012) Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10(4):298–310

    Article  Google Scholar 

  • Ruebsam W, Mayer B, Schwark L (2019) Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution. Glob Planet Chang 172:440–453

    Article  Google Scholar 

  • Rumpf CM, Lewis HG, Atkinson PM (2017) Asteroid impact effects and their immediate hazards for human populations. Geophys Res Lett 44(8):3433–3440

    Article  Google Scholar 

  • Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, Masetti D (2009) Carbon isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56(5):307–1328

    Article  Google Scholar 

  • Sabatino N, Coccioni R, Manta DS, Baudin F, Vallefuoco M, Traina A, Sprovieri M (2015) High-resolution chemostratigraphy of the late Aptian–early Albian oceanic anoxic event (OAE 1b) from the Poggio le Guaine section (Umbria–Marche Basin, central Italy). Palaeogeogr Palaeoclimatol Palaeoecol 426:319–333

    Article  Google Scholar 

  • Sachse VF, Littke R, Jabour H, Schümann T, Kluth O (2012) Late Cretaceous (late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Mar Pet Geol 29(1):35–49

    Article  Google Scholar 

  • Sachsenhofer RF, Popov SV, Akhmetiev MA, Bechtel A, Gratzer R, Groß D, Horsfield B, Rachetti A, Rupprecht B, Schaffar WB, Zaporozhets NI (2017) The type section of the Maikop Group (Oligocene–lower Miocene) at the Belaya River (North Caucasus): depositional environment and hydrocarbon potential. AAPG Bull 101(3):289–319

    Article  Google Scholar 

  • Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology 34(2):125–128

    Article  Google Scholar 

  • Sahoo SK, Planavsky NJ, Jiang G, Kendall B, Owens JD, Wang X, Shi X, Anbar AD, Lyons TW (2016) Oceanic oxygenation events in the anoxic Ediacaran Ocean. Geobiology 14(5):457–468

    Article  Google Scholar 

  • Sanchez-Hernandez Y, Florentin JMM (2016) The influence of regional factors in the expression of oceanic anoxic event 1a (OAE1a) in the semi-restricted Organyà Basin, south-Central Pyrenees, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 441:582–598

    Article  Google Scholar 

  • Sangode SJ, Kumar R (2003) Magnetostratigraphic correlation of the Late Cenozoic fluvial sequences from NW Himalaya, India. Curr Sci:1014–1024

  • Sangode SJ, Kuma, R and Siddaiah NS, (2005). Magnetic polarity and rock magnetic studies across marine to continental transition (Subathu-Dagshai sequence) in the Himalayan Foreland: Singapore. In Proceedings, Asia Oceania Geosciences meeting (p. 284).

  • Satpathy KK, Panigrahi S, Mohanty AK, Sahu G, Achary MS, Bramha SN, Padhi RK, Samantara MK, Selvanayagam M, Sarkar SK (2013) Severe oxygen depletion in the shallow regions of the Bay of Bengal off Tamil Nadu Coast. Curr Sci 104(11):1467–1469

    Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologieenmijnbouw 55(3-4):179–184

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian-Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geol Soc Lond, Spec Publ 26(1):371–399

    Article  Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64(1):67–87

    Google Scholar 

  • Schönfeld J, Kuhnt W, Erdem Z, Flögel S, Glock N, Aquit M, Frank M, Holbourn A (2014) Systematics of past changes in ocean ventilation: a comparison of Cretaceous ocean anoxic event 2 and Pleistocene to Holocene oxygen minimum zones. Biogeosci Discuss 11(9):13343–13387

    Google Scholar 

  • Schopf TJ, Manheim FT (1967) Chemical composition of ectoprocta (Bryozoa). J Paleontol 41:1197–1225

    Google Scholar 

  • Schouten S, van Kaam-Peters HM, Rijpstra WIC, Schoell M, Damste JSS (2000) Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon. Am J Sci 300(1):1–22

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218

    Article  Google Scholar 

  • Shukolyukov A, Lugmair G (1998) Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282(5390):927–930

    Article  Google Scholar 

  • Sluijs A, Röhl U, Schouten S, Brumsack HJ, Sangiorgi F, Damsté JSS, Brinkhuis H (2008) Arctic late Paleocene–early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov ridge, Integrated Ocean drilling program expedition 302). Paleoceanography 23(1)

  • Singh P (1973) Geology of the Subathu Group of Jammu and Kashmir state. Himal Geol 3:284–298

    Google Scholar 

  • Singh BP, Andotra DS (2000) Barrier-lagoon and tidal cycles in Palaeocene to middle Eocene Subathu Formation, NW Himalaya, India. Tertiary Res 20(1/4):65–78

    Google Scholar 

  • Smit J, Hertogen J (1980) An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285(5762):198–200

    Article  Google Scholar 

  • Song C, Woodcock CE (2003) A regional forest ecosystem carbon budget model: impacts of forest age structure and land use history. Ecol Model 164(1):33–47

    Article  Google Scholar 

  • Soua M (2014) A review of Jurassic oceanic anoxic events as recorded in the northern margin of Africa, Tunisia. J Geosci Geomatics 2(3):94–106

    Google Scholar 

  • Soua M (2016) Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: an overview. Int Geol Rev 58(3):277–320

    Article  Google Scholar 

  • Soua M, Chihi H (2014) Optimizing exploration procedure using oceanic anoxic events as new tool for hydrocarbon strategy in Tunisia. In: Gaci S, Hachay O (eds) Chapter Book, in Advances in Data, Methods, Models and Their Applications in Oil/Gas Exploration. Cambridge Scholars Publishing (CSP) Edition, Cambridge, p 55

    Google Scholar 

  • Soussi M (2003) Nouvelle nomenclature lithostratigraphique «événementielle» pour le Jurassique de la Tunisie atlasique. Geobios 36(6):761–773

    Article  Google Scholar 

  • SOUSSI M, ISMAIL MHB, M'RABET ALI (1990) Les «black shales» toarciens de Tunisie centrale: témoins d'événement anoxique sur la marge sud téthysienne. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre 310(5):591–596

    Google Scholar 

  • Southam JR, Peterson WH, Brass GW (1982) Dynamics of anoxia. Palaeogeogr Palaeoclimatol Palaeoecol 40(1–3):183–198

    Article  Google Scholar 

  • Speijer R, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt- Israel). Catastrophic events and mass extinctions: Impacts and beyond 356:533–549

    Google Scholar 

  • Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M, Halverson GP, Macdonald FA, Knoll AH, Johnston DT (2015) Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523(7561):451–454

    Article  Google Scholar 

  • Stoll HM, Schrag DP (2000) High-resolution stable isotope records from the upper cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? Geol Soc Am Bull 112(2):308–319

    Article  Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh: geological society of India. Text Book Series 9:416

    Google Scholar 

  • Srivastava VK, Casshyap SM (1983) Evolution of pre-Siwalik Tertiary basin of Himachal Himalaya. J Geol Soc India 24(3):134

    Google Scholar 

  • Suan G, Mattioli E, Pittet B, Mailliot S, Lécuyer C (2008) Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23(1):PA1202

    Article  Google Scholar 

  • Sundaram R, Henderson RA, Ayyasami K, Stilwell JD (2001) A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous system exposed in the onshore Cauvery Basin, southern India. Cretac Res 22(6):743–762

    Article  Google Scholar 

  • Takashima R, Nishi H, Huber BT, Leckie RM (2006) Greenhouse world and the Mesozoic Ocean. Oceanography

  • Takashima R, Nishi H, Yamanaka T, Tomosugi T, Fernando AG, Tanabe K, Moriya K, Kawabe F, Hayashi K (2011) Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous oceanic anoxic event 2. Nat Commun 2(1):1–5

    Article  Google Scholar 

  • Takashima R, Nishi H, Yamanaka T, Hayashi K, Waseda A, Obuse A, Tomosugi T, Deguchi N, Mochizuki S (2010) High-resolution terrestrial carbon isotope and planktic foraminiferal records of the upper Cenomanian to the lower Campanian in the Northwest Pacific. Earth Planet Sci Lett 289(3–4):570–582

    Article  Google Scholar 

  • Talbi R, Lakhdar R, Smati A, Spiller R, Levey R (2019) Correction to: Aptian–Albian shale oil unconventional system as registration of Cretaceous oceanic anoxic sub-events in the southern Tethys (Bir M’Cherga basin, Tunisia). J Pet Explor Prod Technol 9(2):1023–1024

    Article  Google Scholar 

  • Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Evidence for extreme climatic warmth from late cretaceous Arctic vertebrates. Science 282(5397):2241–2243

    Article  Google Scholar 

  • Tewari, A., Hart, M.B. and Watkinson, M.P., 1996. Foraminiferal recovery after the mid-cretaceous oceanic anoxic events (OAEs) in the Cauvery Basin, Southeast India. Geological Society, London, Special Publications, 102(1), 237–244

    Google Scholar 

  • Tiraboschi D, Erba E, Jenkyns HC (2009) Origin of rhythmic Albian black shales (Piobbico core, central Italy): calcareous nannofossil quantitative and statistical analyses and paleoceanographic reconstructions. Paleoceanography 24(2):PA2222

    Article  Google Scholar 

  • Tourtelot HA (1979) Black shale—its deposition and diagenesis. Clay Clay Miner 27(5):313–321

    Article  Google Scholar 

  • Trabucho-Alexandre J, Dirkx R, Veld H, Klaver G, de Boer PL (2012) Toarcian black shales in the Dutch Central Graben: record of energetic, variable depositional conditions during an oceanic anoxic event. J Sediment Res 82(2):104–120

    Article  Google Scholar 

  • Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, Erba E, Silva IP, Baas M, Wagner T, Damsté JS (2004) Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: correlation and implications based on three key localities. J Geol Soc 161(4):711–719

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27(1):57–102

    Article  Google Scholar 

  • Uveges BT, Junium CK, Scholz CA, Fulton JM (2020) Chemocline collapse in Lake Kivu as an analogue for nitrogen cycling during oceanic anoxic events. Earth Planet Sci Lett 548:116459

    Article  Google Scholar 

  • Valle B, Dal'Bó PF, Mendes M, Favoreto J, Rigueti AL, Borghi L, Silva R Jr (2019) The expression of the oceanic anoxic event 2 (OAE2) in the northeast of Brazil (Sergipe-Alagoas Basin). Palaeogeogr Palaeoclimatol Palaeoecol 529:12–23

    Article  Google Scholar 

  • van Breugel Y, Schouten S, Tsikos H, Erba E, Price GD, Sinninghe Damsté JS (2007) Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: evidence for the release of 13C-depleted carbon into the atmosphere. Paleoceanography 22(1)

  • Van Cappellen P, Ingall ED (1994) Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9(5):677–692

    Article  Google Scholar 

  • Van Helmond NA, Sluijs A, Reichart GJ, SinningheDamsté JS, Slomp CP, Brinkhuis H (2014) A perturbed hydrological cycle during oceanic anoxic event 2. Geology 42(2):123–126

    Article  Google Scholar 

  • Voigt S, Gale AS, Voigt T (2006) Sea-level change, carbon cycling and palaeoclimate during the late Cenomanian of Northwest Europe; an integrated palaeoenvironmental analysis. Cretac Res 27(6):836–858

    Article  Google Scholar 

  • Voigt S, Erbacher J, Mutterlose J, Weiss W, Westerhold T, Wiese F, Wilmsen M, Wonik T (2008) The Cenomanian-Turonian of the Wunstorf section-(North Germany): global stratigraphic reference section and new orbital time scale for oceanic anoxic event 2. Newsl Stratigr 43(1):65

    Article  Google Scholar 

  • Wagner T, Sinninghe Damsté JS, Hofmann P, Beckmann B (2004) Euxinia and primary production in late cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Paleoceanography 19(3)

  • Wang CS, Hu XM, Jansa L, Wan XQ, Tao R (2001) The Cenomanian–Turonian anoxic event in southern Tibet. Cretac Res 22(4):481–490

    Article  Google Scholar 

  • Wang J, Chen D, Yan D, Wei H, Xiang L (2012) Evolution from an anoxic to oxic deep ocean during the Ediacaran–Cambrian transition and implications for bioradiation. Chem Geol 306:129–138

    Article  Google Scholar 

  • Wang T, Li G, Aitchison JC, Ding L, Sheng J (2019a) Evolution of mid-Cretaceous radiolarians in response to oceanic anoxic events in the eastern Tethys (southern Tibet, China). Palaeogeogr Palaeoclimatol Palaeoecol 536:109369

    Article  Google Scholar 

  • Wang M, Wilkins RW, Song G, Zhang L, Xu X, Li Z, Chen G (2015) Geochemical and geological characteristics of the Es3L lacustrine shale in the Bonan sag, Bohai Bay basin, China. Int J Coal Geol 138:16–29

    Article  Google Scholar 

  • Wang X, Collett TS, Lee MW, Yang S, Guo Y, Wu S (2014) Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea. Mar Geol 357:272–292

    Article  Google Scholar 

  • Wang Y, Xu S, Hao F, Lu Y, Shu Z, Lu Y (2019b) Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, southwest China: implications for organic matter differential accumulation. Mar Pet Geol 102:138–154

    Article  Google Scholar 

  • Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161(4):695–702

    Article  Google Scholar 

  • Wendler I, Wendler J, Gräfe KU, Lehmann J, Willems H (2009) Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretac Res 30(4):961–979

    Article  Google Scholar 

  • Wignall P (2005) The link between large igneous province eruptions and mass extinctions. Elements 1(5):293–297

    Article  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93(1–2):21–46

    Article  Google Scholar 

  • Wignall PB, Hallam A, Newton RJ, Sha JG, Reeves E, Mattioli E, Crowley S (2006) An eastern Tethyan (Tibetan) record of the early Jurassic (Toarcian) mass extinction event. Geobiology 4(3):179–190

    Article  Google Scholar 

  • de Wit MJ, Ghosh JG, de Villiers S, Rakotosolofo N, Alexander J, Tripathi A, Looy C (2002) Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem recovery. The Journal of Geology 110(2):227–240

    Article  Google Scholar 

  • Witts JD, Newton RJ, Mills BJ, Wignall PB, Bottrell SH, Hall JL, Francis JE, Crame JA (2018) The impact of the cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: evidence from Seymour Island, Antarctica. Geochim Cosmochim Acta 230:17–45

    Article  Google Scholar 

  • Wolbach WS, Gilmour I, Anders E, Orth CJ, Brooks RR (1988) Global fire at the Cretaceous–Tertiary boundary. Nature 334(6184):665–669

    Article  Google Scholar 

  • Wynne AB (1872) Memoir on the Geology of Kutch, to accompany the map compiled by AB Wynne and F Fedden during the season 1867–1869 Geological Survey of India. Memoir 19(2):1–269

    Google Scholar 

  • Wyrtki K (1962) The subsurface water masses in the western South Pacific Ocean. Mar Freshw Res 13(1):18–47

    Article  Google Scholar 

  • Yan D, Wang H, Fu Q, Chen Z, He J, Gao Z (2015) Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: implications for organic matter accumulation. Mar Pet Geol 65:290–301

    Article  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308(5728):1611–1615

    Article  Google Scholar 

  • Zeebe RE, Zachos JC, Dickens GR (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene thermal maximum warming. Nat Geosci 2(8):576

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Geology (Panjab University, Chandigarh, India) and the Department of Petroleum Engineering and Earth Sciences (University of Petroleum and Energy Studies, Dehradun, India) for providing necessary facilities. The first author is grateful to mentors/doctorate supervisors (Seema Singh and Uday Bhan) and Council of Scientific and Industrial Research (India) for providing the research fellowship, grant no. 09/135(0732)/2015EMR-1. We greatly appreciate and thank the Editor, one anonymous reviewer, and another reviewer, Prof. Soumyajit Mukherjee (IIT Bombay) for their constructive comments and suggestions that helped improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Attila Ciner

Supplementary information

Supplementary Figure 1:

Volcanic greenhouse scenario as shown through the flow chart, wherein chain of environmental events is shown due to eruption of large igneous provinces (details in Wignall, 2005). (PNG 303 kb)

High Resolution Image (TIF 2558 kb)

Supplementary Figure 2:

Plot showing volcanic and impact events versus mass extinction intensity and oceanic anoxic events during Cretaceous time. There is good correlation between large igneous provinces and OAE 1a, 1b, 1c, 1d, OAE 2, OAE 3 (details in Courtillot, 1999). (PNG 345 kb)

High Resolution Image (TIF 2765 kb)

Supplementary Figure 3:

Correlation between oceanic anoxic events (OAEs) and mass extinctions/ impacts/ large igneous provinces during during Cretaceous time (details in Keller, 2005 and references therein). (PNG 418 kb)

High Resolution Image (TIF 1749 kb)

Supplementary Figure 4:

Globally well-established OAEs and corresponding record of global sea level changes during mid-Cretaceous time (modified from Leckie et al. 2002). (PNG 140 kb)

High Resolution Image (TIF 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Singh, S. & Bhan, U. Oceanic anoxic events in the Earth’s geological history and signature of such event in the Paleocene-Eocene Himalayan foreland basin sediment records of NW Himalaya, India. Arab J Geosci 15, 317 (2022). https://doi.org/10.1007/s12517-021-09180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-09180-y

Keywords

Navigation