Skip to main content
Log in

Chemical composition of gemstones and characterization of their host pegmatites and country rocks from Chumar Bakhoor, Gilgit-Baltistan, Pakistan: implications for the source of gem-forming fluids

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper presents petrographic details and geochemical data on gemstone-producing pegmatites and the rocks enclosing them, Sumayar pluton exposed in the vicinity, and chemical composition of a variety of gemstones to elucidate the nature and source of gemstone-forming fluids in the Chumar Bakhoor area of Gilgit-Baltistan, northern Pakistan. The pegmatites occur as patches, pods, lenses, and dykes in calc-silicate rocks and amphibolite belonging to the southern Karakoram Metamorphic Complex (KMC) as well as in the intrusive Sumayar pluton. A close spatial association suggests the possibility of a strong genetic relationship between the Sumayar pluton and the gemstone-hosting granitic pegmatites. Hence, the latter most likely represent pegmatitic phase of a granitic system that in its orthomagmatic stage produced the Sumayar pluton. The pegmatites thus solidified from pockets of volatile-rich melt residues after the granitic magma that solidified as Sumayar pluton. The mineralogical make-up of the pegmatite, the gemstone assemblage, and chemical characteristics of the individual gemstones suggest that the pegmatite-forming melt was highly enriched in Be, B, F, Cl, and H2O, and depleted in Li, REE, and Ta relative to its parent granitic magma. Owing to a strong likelihood of generation by localized partial melting of metapelitic rocks at shallow depth in a post-collisional tectonic setting, the magma parental to the Sumayar pluton had the potential to evolve through the process of differentiation into residues containing gemstone-forming fluids. The calc-silicate rocks, which host the gemstone-producing pegmatites, were formed by isochemical metamorphism of calcareous mudstones rather than metasomatism of carbonate rocks, although they show some mineralogical similarities with skarn-type assemblages. However, the calc-silicate rocks neither played any role in the formation of gemstones nor caused any change in the gemstone chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agheem MH, Shah MT, Khan T, Murata M, Arif M, Dars H (2014) Shigar valley gemstones, their chemical composition and origin, Skardu, Gilgit-Baltistan. Pakistan Arab J Geosci 7(9):3801–3814. https://doi.org/10.1007/s12517-013-1045-8

    Article  Google Scholar 

  • Barton MD, Ilchik RP, Marikos MA (1991) Metasomatism. Rev Mineral 26:321–350

    Google Scholar 

  • Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. The Journal of Geology 93(3):271–291. https://doi.org/10.1086/628952

    Article  Google Scholar 

  • Bill H, Sierro J, Lacroix R (1967) Origin of coloration in some fluorites. American Mineralogist: Journal of Earth and Planetary Materials 52(7-8):1003–1008

    Google Scholar 

  • Černý P (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geosci Can 18(2):68–81

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43(6):2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005

    Article  Google Scholar 

  • Crawford M, Searle M (1993) Collision-related granitoid magmatism and crustal structure of the Hunza Karakoram, North Pakistan. Geol Soc Lond Spec Publ 74(1):53–68. https://doi.org/10.1144/GSL.SP.1993.074.01.05

    Article  Google Scholar 

  • Crawford MB, Windley BF (1990) Leucogranites of the Himalaya/Karakoram: implications for magmatic evolution within collisional belts and the study of collision-related leucogranite petrogenesis. J Volcanol Geotherm Res 44(1-2):1–19. https://doi.org/10.1016/0377-0273(90)90008-4

    Article  Google Scholar 

  • Deer W, Zussman J, Howie R.(1966) An introduction to the rock-forming minerals: Longman: London

  • Dostal J (2016) Rare metal deposits associated with alkaline/peralkaline igneous rocks. Rev Econ Geol 18:33–54. https://doi.org/10.5382/Rev.18.02

    Article  Google Scholar 

  • Fraser JE, Searle MP, Parrish RR, Noble SR (2001) Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains. J Geological Society of America Bulletin 113(11):1443–1455. https://doi.org/10.1130/0016-7606(2001)113

    Article  Google Scholar 

  • Fuertes-Fuente M, Martin-Izard A, Boiron MC, Viñuela JM (2000) P-T path and fluid evolution in the Franqueira granitic pegmatite, central Galicia, northwestern Spain. Can Mineral 38(5):1163–1175. https://doi.org/10.2113/gscanmin.38.5.1163

    Article  Google Scholar 

  • Gaetani M, Casnedi R, Fois E, Garzanti E, Jadoul F, Nicora A, Tintori A (1986) Stratigraphy of the Tethys Himalaya in Zanskar, Ladakh. Riv Ital Paleontol Stratigr 91:443–478

    Google Scholar 

  • Giuliani G, France-Lanord C, Zimmermann J, Cheilletz A, Arboleda C, Charoy B, Coget P, Fontan F, Giard D (1997) Fluid composition, δD of channel H2O, and δ18O of lattice oxygen in beryls: genetic implications for Brazilian, Colombian, and Afghanistani emerald deposits. Int Geol Rev 39(5):400–424. https://doi.org/10.1080/00206819709465280

    Article  Google Scholar 

  • Grande L, Augustyn, A (2009) Gems and gemstones: timeless natural beauty of the mineral world: University of Chicago Press

  • Hussain A, Zhao KD, Arif M, Palmer MR, Chen W, Zhang Q, Li Q, Jiang SY, Girei MB (2020) Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan. Ore Geol Rev 103749. https://doi.org/10.1016/j.oregerev.2020.103749

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64(8):843–864. https://doi.org/10.2113/gsecongeo.64.8.843

    Article  Google Scholar 

  • Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai); indications from a combined CL-SEM study. J Mineralogical Magazine 63(2):165–177

    Article  Google Scholar 

  • LaMaskin TA, Dorsey RJ, Vervoort JD (2008) Tectonic controls on mudrock geochemisry, Mesozoic rocks of eastern Oregon and western Idaho, USA: implications for cordilleran tectonics. J Sediment Res 78(12):765–783. https://doi.org/10.2110/jsr.2008.087

    Article  Google Scholar 

  • Laurs BM, Dilles JH, Snee LW (1996) Emerald mineralization and metasomatism of amphibolite, Khaltaro granitic pegmatite-hydrothermal vein system, Haramosh Mountains, northern Pakistan. Can Mineral 34(6):1253–1286

    Google Scholar 

  • Linnen RL, Van Lichtervelde M, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8(4):275–280. https://doi.org/10.2113/gselements.8.4.275

    Article  Google Scholar 

  • London D (1987) Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine. Geochim Cosmochim Acta 51(3):403–420. https://doi.org/10.1016/0016-7037(87)90058-5

    Article  Google Scholar 

  • London D (1990) Internal differentiation of rare-element pegmatites: a synthesis of recent research. Geol Soc Am Spec Pap 246:35–50

    Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80(1-4):281–303. https://doi.org/10.1016/j.lithos.2004.02.009

    Article  Google Scholar 

  • London D, Evensen JM (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Rev Mineral Geochem 50(1):445–486. https://doi.org/10.2138/rmg.2002.50.11

    Article  Google Scholar 

  • Lum JE, Viljoen F, Cairncross B, Frei D (2016) Mineralogical and geochemical characteristics of Beryl (aquamarine) from the Erongo Volcanic Complex. Namibia J Afr Earth Sci 124:104–125. https://doi.org/10.1016/j.jafrearsci.2016.09.006

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Merz JL, Pershan P (1967) Charge conversion of irradiated rare-earth ions in calcium fluoride. Phys Rev 162(2):217. https://doi.org/10.1103/PhysRev.162.217

    Article  Google Scholar 

  • Naldrett D, Lachaine A, Naldrett S (1987) Rare-earth elements, thermal history, and the colour of natural fluorites. Can J Earth Sci 24(10):2082–2088. https://doi.org/10.1139/e87-197

    Article  Google Scholar 

  • Norton JJ, Redden JA (1990) Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills. South Dakota Am Mineral 75(5-6):631–655

    Google Scholar 

  • Parat F, Bucher K (2009) Topaz-fluorite granites from the Black Forest, Germany: evolution of F-rich felsic magmas. Geochimica et Cosmochimica Acta Supplement 73:A992

    Google Scholar 

  • Rehman HU, Seno T, Yamamoto H, Khan T (2011) Timing of collision of the Kohistan–Ladakh Arc with India and Asia: debate. Island Arc 20(3):308–328. https://doi.org/10.1111/j.1440-1738.2011.00774.x

    Article  Google Scholar 

  • Rosenberg PE (1972) Paragenesis of topaz-bearing portion of Brown Derby no.1 pegmatite, Gunnison Country Colorado. Am Mineral 57(3-4):571

    Google Scholar 

  • Rudnick R, Gao S, Holland H, Turekian K (2003) Composition of the continental crust. In The Crust, vol. 3 (ed. R. L. Rudnick). Elsevier, pp. 1-64

  • Schaltegger U, Zeilinger G, Frank M, Burg JP (2002) Multiple mantle sources during island arc magmatism: U–Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14(6):461–468. https://doi.org/10.1046/j.1365-3121.2002.00432.x

    Article  Google Scholar 

  • Searle MP (1991) Geology and tectonics of Karakoram Mountain: John Wiley &Sons: New Jersey, USA

  • Searle M, Khan, MA (1997) Geological map of north Pakistan: and adjacent areas of Northern Ladakh and Western Tibet:(Western Himalaya, Salt Ranges, Kohistan, Karakoram, Hindu Kush): British Geological Service (BGS)

  • Searle M, Tirrul R (1991) Structural and thermal evolution of the Karakoram crust. Geol Soc Lond Spec Publ 148(1):65–82. https://doi.org/10.1144/gsjgs.148.1.0065

    Article  Google Scholar 

  • Siegel K, Vasyukova OV, Williams-Jones AE (2018) Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador. Lithos 308:34–52. https://doi.org/10.1016/j.lithos.2018.03.003

    Article  Google Scholar 

  • Simmons WB, Pezzotta F, Shigley JE, Beurlen H (2012) Granitic pegmatites as sources of colored gemstones. Elements 8(4):281–287. https://doi.org/10.2113/gselements.8.4.281

    Article  Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45(1-4):29–44. https://doi.org/10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Tracy RJ (1991) Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks, and iron formations. Rev Mineral 26:207–289

    Google Scholar 

  • Voillot P (1995) Chumar Bakar. carnet de route d'un chercheur de pierres precieuses. Criterion, France

  • Webster JD, Rebbert CR (1998) Experimental investigation of H 2 O and Cl solubilities in F-enriched silicate liquids; implications for volatile saturation of topaz rhyolite magmas. Contrib Mineral Petrol 132(2):198–207. https://doi.org/10.1007/s004100050416

    Article  Google Scholar 

  • Winter JD (2010) An introduction to igneous and metamorphic petrology. Prentice Hall, New York

    Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Peter Gadas of the Department of Geological Sciences, Masaryk University Brno and Czech Geological Survey, Czech Republic, for his kind favor to carry out EMPA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Hussain.

Additional information

Responsible Editor: Domenico M. Doronzo

Highlights

•Chumar Bakhoor granitic pegmatites are highly productive in gemstones.

•These pegmatites have NYF-type pegmatites affinity.

•No role of host rocks in gemstone mineralization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Shah, M.T., Arif, M. et al. Chemical composition of gemstones and characterization of their host pegmatites and country rocks from Chumar Bakhoor, Gilgit-Baltistan, Pakistan: implications for the source of gem-forming fluids. Arab J Geosci 14, 1303 (2021). https://doi.org/10.1007/s12517-021-07682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07682-3

Keywords

Navigation