Skip to main content
Log in

Effect of the movement across a surface breaking, inclined, locked, finite strike-slip fault in visco-elastic medium of Burger’s rheology

  • 2nd CAJG 2019
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Seismically active regions are associated with fault systems, and the movement of these faults influences the nature of stress accumulation/release in that region. For in-depth analysis of the effect of such movement, a mathematical model has been assumed by considering a surface breaking, inclined, finite strike-slip fault in visco-elastic medium of Burger’s rheology and considered the deformation caused in the medium. Analytical expressions for displacements, stresses and strains have been obtained by using Green’s function technique and Laplace transform. The variations of displacements, stresses and strains due to locked fault have been studied. These variations are graphically depicted for different inclinations of the fault with the free surface and for different slip magnitude using MATLAB. Such studies may throw some light on the nature of stress and strain accumulation/ release due to fault movement in Burger medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chinnery MA (1961) The deformation of the ground around surface faults. Bull Seismol Soc Am 51:355–372

    Article  Google Scholar 

  • Chinnery MA (1964) The strength of the earth's crust under horizontal shear stress. J Geophys Res 69:2085–2089

    Article  Google Scholar 

  • Chinnery MA (1965) The vertical displacements associated with transcurrent faulting. J Geophys Res 70:4627–4632

    Article  Google Scholar 

  • Clift P, Lin J, Baarckhausen U (2002) Evidence of low flexural rigidity and low viscosity lower continental crust during continental break - up in the South China. Mar Pet Geol 19:951–970

    Article  Google Scholar 

  • Debnath SK (February 2013a) Nature of stress-strain accumulation due to a rectangular finite fault in a viscoelastic layer over a viscoelastic half-space. Int J Sci Technol Res 2(3)

  • Debnath SK (June 2013b) Two interacting creeping vertical rectangular strike-slip faults in a viscoelastic half-space model of the lithosphere. Int J Sci Eng Res 4(6)

  • Debnath SK, Sen S (2012) A Creeping vertical strike-slip fault of finite length in a viscoelastic half-space model of the Lithosphere. Int J Comput 2(3):687–697

    Google Scholar 

  • Ghosh U, Sen S (2011) Stress accumulation near buried fault in lithosphere-asthenosphere system. Int J Comput I(4):786–795

    Google Scholar 

  • Hu Y, Burgmann R, Banerjee P, Feng L, Hill EM, Ito T, Tabei T, Wang K (2016) Asthenosphere rheology inferred from observations of the 2012 Indian Ocean Earthquake. Nature 538:368–372

    Article  Google Scholar 

  • Karato S (2010) Rheology of the earth's mantle: a historical review. Gondwana Res 18(1)

  • Kundu P, Sarkar (Mondal) S, Mondal D (2021a) Creeping effect across a buried, inclined, finite strike-slip fault in an elastic-layer overlying an elastic half-space. GEM – Int J Geomath 12(1). https://doi.org/10.1007/s13137-020-00170-y

  • Kundu P, Sarkar (Mondal) S, Rashidi A, Dutykh D (2021b) Comparison of ground deformation due to movement of a fault for different types of crack surface. GEM - Int J Geomath 12(3). https://doi.org/10.1007/s13137-021-00171-5

  • Maruyama T (1964) Statistical elastic dislocations in an infinite and semi-infinite medium. Bull Earthquake Res Inst, Tokyo Univ. 42:289–368

    Google Scholar 

  • Maruyama T (1966) On two dimensional dislocations in an infinite and semi-infinite medium. Bull. Earthquake Res. Inst. Tokyo Univ., vol 44 (part 3), pp 811-871

  • Mondal D, Sarkar (Mondal) S (2019) Effect of a long dip-slip fault on displacement, stress and strain in the viscoelastic half space of Burger's rheology. IOSR J Eng (IOSRJEN) 9(1)

  • Mondal B, Sen S (2016) Long vertical strike-slip fault in a multi-layered elastic model. Geosciences 6(2):29–40

    Article  Google Scholar 

  • Mondal D, Sarkar (Mondal) S, Sen S (2019a) Effect of movement across a long, inclined, buried, creeping, strike - slip fault in the visco-elastic medium of Burger's Rheology. J Eng Appl Sci 14(3):965–974

    Article  Google Scholar 

  • Mondal D, Sarkar (Mondal) S, Sen S (2019b) Effect of an infinite surface breaking, inclined, dip- slip fault in viscoelastic half space under tectonic forces on displacement, stress and strain. Int J Appl Math 31(5):569–584

    Google Scholar 

  • Mukhopadhyay A, Mukherji P (1979) On stress accumulation and fault slip in the lithosphere. Mausam 30:353–358

    Google Scholar 

  • Mukhopadhyay A, Sen S, Paul BP (1980a) On stress accumulation in a viscoelastic lithosphere containing a continuously slipping fault. Bull Soc Earthquake Technology 17(1):1–10

    Google Scholar 

  • Mukhopadhyay A, Sen S, Paul BP (1980b) On stress accumulation near a continuously slipping fault in a two layered model of lithosphere. Bull Soc Earthquake Technology 17(4):29–38

    Google Scholar 

  • Okada Y (August, 1986) Surface deformation due to shear and tensile fault in a half –space. Bull Seismol Soc Am 75(4):1135–1154

    Article  Google Scholar 

  • Okada Y (April, 1992) Internal deformation due to shear and tensile fault in a half-space. Bull Seismol Soc Am 82(2):1018–1040

    Google Scholar 

  • Pal B, Sen S, Mukhopadhyay A (1979) On stress accumulation near a finite rectangular fault. Indian Journal of Meteorology, Hydrology and Geophysics (Mausam) 30:347–352

    Google Scholar 

  • Rosenman M, Singh SJ (1973) Quasi-static strains and tilts due to faulting in a viscoelastic half-space. Bull Seismol Soc Am 63(5):1737–1752

    Google Scholar 

  • Rybicki K (1971) The elastic residual field of a very long strike-slip fault in the presence of a Discontinuity. Bull Seismol Soc Am 61:79–92

    Google Scholar 

  • Rybicki K (1973) Static deformation of a multi-layered half-space by a very long strike-slip fault. Pure Appl Geophys 110:1955–1966

    Article  Google Scholar 

  • Sato R (1972) Stress drop of finite fault. J Phys Earth 20:397–407

    Article  Google Scholar 

  • Segal P (2010) Earthquake and volcano deformation. Princeton University Press

  • Sen S, Sarker S, Mukhopadhyay A (1993) A Creeping and surface breaking long strike-slip fault inclined to the vertical in a viscoelastic half-space. Mausam 44(4):365–372

    Google Scholar 

  • Stekeetee JA (1958a) On Volterra's dislocations in a semi-infinite medium. Can J Phys 36:192–205

    Article  Google Scholar 

  • Stekeetee JA (1958b) Some geophysical applications of the theory of dislocations. Can J Phys 36:1168–1198

    Article  Google Scholar 

Download references

Code availability

We have used MATLAB software.

Funding

This study of the first author is funded by DST-INSPIRE, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sarkar (Mondal).

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Abdullah M. Al-Amri

This paper was selected from the 2nd Conference of the Arabian Journal of Geosciences (CAJG), Tunisia 2019

Appendices

Appendix 1.

Before fault movement

To solve the boundary value problem, it is customary to assume that

(16)

Taking Laplace transform on all constitutive equations, boundary conditions and then using Eq. (16) (following Kundu et al. (2021a), Kundu et al. 2021b), it is found that

$$ {\displaystyle \begin{array}{c}{A}_1=\frac{\tau_L}{2\ {s}^2\ \left({q}_1+{q}_2s\right)}\\ {}{B}_1={A}_2=\frac{1+{p}_1+{p}_2{s}^2}{2s\left({q}_1+{q}_2s\right)}\left[{\tau}_{\infty }(s)-\frac{\left({p}_1+{p}_2s\right){\tau}_{\infty }(0)}{1+{p}_1+{p}_2{s}^2}\right]\end{array}} $$

and C2 = B2 = C3 = B3 = 0

Therefore, Eq. (16) becomes

$$ {\displaystyle \begin{array}{c}\overline{u_1}=\frac{{\left({u}_1\right)}_0}{s}+\frac{\tau_L{y}_1}{2{s}^2\left({q}_1+{q}_2s\right)}+\frac{1+{p}_1+{p}_2{s}^2}{2s\left({q}_1+{q}_2s\right)}\left[{\tau}_{\infty }(s)-\frac{\left({p}_1+{p}_2s\right){\tau}_{\infty }(0)}{1+{p}_1+{p}_2{s}^2}\right]{y}_2\\ {}\overline{u_2}=\frac{{\left({u}_2\right)}_0}{s}+\frac{1+{p}_1+{p}_2{s}^2}{2s\left({q}_1+{q}_2s\right)}\left[{\tau}_{\infty }(s)-\frac{\left({p}_1+{p}_2s\right){\tau}_{\infty }(0)}{1+{p}_1+{p}_2{s}^2}\right]{y}_1\\ {}\overline{u_3}=\frac{{\left({u}_3\right)}_0}{s}\end{array}} $$

whose inverse Laplace transform results in the following:

$$ {\displaystyle \begin{array}{c}{u}_1={\left({u}_1\right)}_0+\frac{\tau_L{y}_1}{2{q}_1}\left[t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right]+\frac{\tau_{\infty }(0)}{2{q}_1}\left[t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)+k\left\{\frac{t^2}{2}+\frac{q_2}{q_1}\left(\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)-t\right)+{p}_1\left(t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right)+{p}_2\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right\}\right]{y}_2\\ {}\begin{array}{c}{u}_2={\left({u}_2\right)}_0+\frac{\tau_{\infty }(0)}{2{q}_1}\left[t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)+k\left\{\frac{t^2}{2}+\frac{q_2}{q_1}\left(\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)-t\right)+{p}_1\left(t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right)+{p}_2\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right\}\right]{y}_1\\ {}{u}_3={\left({u}_3\right)}_0\end{array}\end{array}} $$

Therefore,

$$ {\displaystyle \begin{array}{c}{\tau}_{11}=\frac{{\left({\tau}_{11}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]+\left[{\tau}_L-\frac{\tau_L}{A}\left\{\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right\}\right]\\ {}{\tau}_{12}=\frac{{\left({\tau}_{12}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]+\left[{\tau}_{\infty }(t)-\frac{{\left({\tau}_{\infty}\right)}_0}{A}\left\{\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right\}\right]\\ {}\begin{array}{c}{\tau}_{13}=\frac{{\left({\tau}_{13}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]\\ {}{\tau}_{23}=\frac{{\left({\tau}_{23}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]\\ {}\begin{array}{c}{\tau}_{22}=\frac{{\left({\tau}_{22}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]\\ {}\begin{array}{c}{\tau}_{33}=\frac{{\left({\tau}_{33}\right)}_0}{A}\left[\left({p}_1-{p}_2{r}_1\right){e}^{-{r}_1t}-\left({p}_1-{p}_2{r}_2\right){e}^{-{r}_2t}\right]\\ {}{e}_{11}=\frac{1}{2}{\left({e}_{11}\right)}_0\\ {}\begin{array}{c}{e}_{12}=\frac{1}{2}{\left({e}_{12}\right)}_0+\frac{\tau_{\infty }(0)}{4{q}_1}\left[t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)+k\left\{\frac{t^2}{2}+\frac{q_2}{q_1}\left(\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)-t\right)+{p}_1\left(t-\frac{q_2}{q_1}\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right)+{p}_2\left(1-{e}^{-\frac{q_1t}{q_2}}\right)\right\}\right]\\ {}{e}_{13}=\frac{1}{2}{\left({e}_{13}\right)}_0\end{array}\end{array}\end{array}\end{array}\end{array}} $$

Appendix 2.

After fault movement

After the seismic event when the fault becomes locked, the displacements, stresses and strains have been found in the form given in Eq. (13), where (ui)1, (τij)1, (eij)1 (i, j = 1, 2, 3) are given in Appendix 1. (ui)2, (τij)2, (eij)2 (i, j = 1, 2, 3) satisfy all the constitutive equations and boundary conditions. These boundary value problems involving (ui)2, (τij)2, (eij)2 (i, j = 1, 2, 3) can be solved by using modify Green’s function technique developed by Maruyama (Kundu et al. 2021a; Kundu et al. 2021b) and Rybicki (Pal et al. 1979; Rosenman and Singh 1973) and the corresponding principle. According to them, it is found that

$$ \overline{{\left({u}_1\right)}_2}(Q)={\iint}_F\left[\overline{{\left({u}_1\right)}_2}(s)\right]G\left(P,Q\right)d{x}_3d{x}_1 $$

where Q(y1, y2, y3) is field point in the half-space, P(x1, x2, x3) is any point on the fault F, [(u1)2(p)] is the magnitude of discontinuity of u1 across F and G is the Green’s function.

where \( G\left(P,Q\right)=\frac{\partial }{\partial {x}_2}{G}_1\left(P,Q\right) \)

$$ {G}_1\left(P,Q\right)=\frac{1}{{\left[{\left({y}_1-{x}_1\right)}^2+{\left({y}_2-{x}_2\right)}^2+{\left({y}_3-{x}_3\right)}^2\right]}^{\frac{1}{2}}}-\kern0.5em \frac{1}{{\left[{\left({y}_1+{x}_1\right)}^2+{\left({y}_2-{x}_2\right)}^2+{\left({y}_3-{x}_3\right)}^2\right]}^{\frac{1}{2}}} $$

Then \( G\left(P,Q\right)==\frac{y_2-{x}_2}{{\left[{\left({y}_1-{x}_1\right)}^2+{\left({y}_2-{x}_2\right)}^2+{\left({y}_3-{x}_3\right)}^2\right]}^{\frac{3}{2}}}-\kern0.5em \frac{y_2-{x}_2}{{\left[{\left({y}_1+{x}_1\right)}^2+{\left({y}_2-{x}_2\right)}^2+{\left({y}_3-{x}_3\right)}^2\right]}^{\frac{3}{2}}} \)

P(x1, x2, x3) being a point on the fault F. Since the fault is inclined at an angle θ and depth is d from the free surface, therefore, 0 ≤ x2 ≤ D cos θ, 0 ≤ x3 ≤ D sin θ and x2 = x3 cot θ. A change in coordinate from (x1, x2, x3) to \( \left({x}_1^{\prime },{x}_2^{\prime },{x}_3^{\prime}\right) \) is considered which is connected by the relations:

$$ {x}_1={x}_1^{\prime },\kern1em {x}_2={x}_2^{\prime}\sin \theta +{x}_3^{\prime}\cos \theta, \kern0.5em {x}_3=-{x}_2^{\prime}\cos \theta {x}_3^{\prime}\sin \theta $$

From x2 = x3 cot θ, it is found that \( {x}_2^{\prime }=0 \)

Then \( {x}_1={x}_1^{\prime },\kern0.5em {x}_2={x}_3^{\prime}\cos \theta, \kern0.75em {x}_3={x}_3^{\prime}\sin \theta \)

and \( d{x}_1=d{x}_1^{\prime },\kern0.75em d{x}_2^{\prime }=0,\kern0.75em d{x}_3=\sin \theta d{x}_3^{\prime } \)

$$ \overline{{\left({u}_1\right)}_2}(Q)={\iint}_F\left[\overline{{\left({u}_1\right)}_2}(s)\right]G\left(P,Q\right)d{x}_3d{x}_1 $$

Since the coordinate of the end points of the fault are taken w.r.t prime coordinate system as A (−L, 0, 0) and B (L, 0, 0) respectively then the limit of the integration of \( {x}_1^{\prime } \)is −L to L. Also w.r.t prime coordinate system the width of the fault is D which is in \( {x}_3^{\prime } \) direction; then the limit of \( {x}_3^{\prime } \) is taken as 0 to D.

Then \( \overline{{\left({u}_1\right)}_2}\ (Q) \) = \( {\int}_{-L}^L{\int}_0^D\frac{U_1}{s}f\left({x}_1^{\prime },{x}_3^{\prime}\right)G\left(P,Q\right)\sin \theta d{x}_3^{\prime }d{x}_1^{\prime } \)

= U1 /s ϕ(y1, y2, y3)

Taking inverse Laplace transform we get,

\( {\left({u}_1\right)}_2(Q)=\frac{U_1}{2\pi}\phi \left({y}_1,{y}_2,{y}_3\right), \)where t1 = t − T1 and

$$ \phi \left({y}_1,{y}_2,{y}_3\right)={\int}_{-L}^L{\int}_0^Df\left({x}_1^{\prime },{x}_3^{\prime}\right)G\left(P,Q\right)\sin \theta\ {d}^{\prime }{x}_3{d}^{\prime }{x}_1={\int}_{-L}^L{\int}_0^D\left\{\frac{y_2-{x}_3^{\prime}\cos \theta }{{\left[{\left({y}_1-{x}_1^{\prime}\right)}^2+{\left({y}_2-{x}_3^{\prime}\cos \theta \right)}^2+{\left({y}_3-{x}_3^{\prime}\sin \theta \right)}^2\right]}^{\frac{3}{2}}}-\frac{y_2-{x}_3^{\prime}\cos \theta }{{\left[{\left({y}_1+{x}_1^{\prime}\right)}^2+{\left({y}_2-{x}_3^{\prime}\cos \theta \right)}^2+{\left({y}_3-{x}_3^{\prime}\sin \theta \right)}^2\right]}^{\frac{3}{2}}}\right\}f\left({x}_1^{\prime },{x}_3^{\prime}\right)\sin \theta d{x}_3^{\prime }d{x}_1^{\prime } $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Sarkar (Mondal), S. Effect of the movement across a surface breaking, inclined, locked, finite strike-slip fault in visco-elastic medium of Burger’s rheology. Arab J Geosci 14, 918 (2021). https://doi.org/10.1007/s12517-021-07230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07230-z

Keywords

Navigation