Skip to main content

Advertisement

Log in

GIS-Based Multi-Criteria Decision Analysis Approach (GIS-MCDA) for investigating mass movements’ hazard susceptibility along the first section of the Algerian North-South Highway

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The North-South highway is a central axis of the Algerian road network. This major project is expected to enhance the socio-economic development of Algeria. However, its first section is implemented within a complex region with very contrasted landscapes marked by mass movements. In the present work, we conducted a mass movement susceptibility assessment on the first section of the road infrastructure using a Multi-Criteria Decision Analysis approach. Various data from different sources were processed in a GIS environment, and nine landslide and rockfall conditioning factors were considered: Lithology, Slope, Daily Temperature Amplitude, Rainfall, Lineament Density, NDVI, Relative Relief, Drainage Density, and Distance to Streams. Each of the conditioning factors was selected, reclassified, and ranked according to its influence on each mass movement type. Two popular GIS-MCDA methods, namely AHP and WLC, were used to weight the influence and combine the selected factors and construct the landslide and rockfall assessment models. Then, landslide and rockfall susceptibility indices were calculated and used to produce mass movement susceptibility maps of the study area. Finally, a spatial analysis was performed to assess the highway section’s susceptibility to the two mass movements. The results show that 22.49% and 12.44% of the road section are highly susceptible to landslide and rockfall hazards, respectively. Finally, the combination of the resulting map with the road chainage enabled the delineation of segments highly susceptible to landslide and rockfall hazards by kilometric points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedin J, Rabby YW, Hasan I, Akter H (2020) An investigation of the characteristics, causes, and consequences of June 13, 2017, landslides in Rangamati District Bangladesh. Geoenvironmental Disasters 7(1):1–19

    Article  Google Scholar 

  • Abija FA, Nwosu JI, Ifedotun AI, Osadebe CC (2020) Landslide susceptibility assessment of Calabar, Nigeria using geotechnical, remote sensing and multi-criteria decision analysis: implications for urban planning and development. SDRP J Earth Sci Environ Stud 4(6):774–788

    Google Scholar 

  • Alcántara-Ayala I, Esteban-Chávez O, Parrot JF (2006) Landsliding related to land-cover change: a diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 65(2):152–165. https://doi.org/10.1016/j.catena.2005.11.006

    Article  Google Scholar 

  • Algerie Focus Blog (2017) Online newspaper article, “Chiffa (Blida), Une explosion près d’un tunnel provoque la mort de quatre gendarmes” “Chiffa (Blida) An explosion near a tunnel kills four gendarmes”, Algerie Focus Blog, 15.01 Available at : http://algeriefocus.blogspot.com/2017/01/chiffa-blida-une-explosion-pres-dun.html

  • Allen S, Huggel C (2013) Extremely warm temperatures as a potential cause of recent high mountain rockfall. Glob Planet Chang 107:59–69. https://doi.org/10.1016/j.gloplacha.2013.04.007

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32(4):269–277. https://doi.org/10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Anderson SP, Rengers FK, Foster MA, Winchell EW, Anderson RS (2017) Rainfall influence on styles of mass movement. AGUFM EP51B-1638

  • Baharvand S, Rahnamarad J, Soori S, Saadatkhah N (2020) Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS. Environ Earth Sci 79:1–10

    Article  Google Scholar 

  • Banerjee P, Ghose MK, Pradhan R (2018) Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arab J Geosci 11(7). https://doi.org/10.1007/s12517-018-3488-4

  • Barlow J, Martin Y, Franklin SE (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Can J Remote Sens 29(4):510–517. https://doi.org/10.5589/m03-018

    Article  Google Scholar 

  • Kamel Benelkadi (2007) Online newspaper article, "La route nationale reliant Blida et Médéa est coupée à la circulation au point kilométrique 65+200 dans la commune de Chiffa, en raison d’un glissement de terrain.” The national road linking Blida and Medea is closed to circulation at kilometre point 65+200 in the commune of Chiffa, due to a landslide." EL WATAN.com .31.10. Available at : https://www.elwatan.com/archives/actualites/quatre-morts-et-dimportants-degats-31-10-2007

  • Benkaci T, Dechemi N (2014) Hydrological risks analysis and impacts to water quality for east-west motorway (Algeria). Revue LJEE

  • Bera A, Mukhopadhyay BP, Das D (2019) Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards 96(2):935–959

    Article  Google Scholar 

  • Berchiche, & Guettouche (2018) Integration of an MCA-GIS approach for the modelling and assessment of mass movement risk. case of Aїn El Hammam, Basin of Tizi-Ouzou (Algeria). Annals of the University of Oradea, Geography Series/Analele Universitatii Din Oradea, Seria Geografie, 28(2).

  • Bles J-L (1971) Etude tectonique et microtectonique d’un massif autochtone tellien et de sa couverture de nappes; le Massif de Blida (Algerie du Nord). Bulletin de La Société Géologique de France 7(5–6):498–511

    Article  Google Scholar 

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74(2):337–355. https://doi.org/10.1007/s10064-014-0616-6

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci 9(2):1–24. https://doi.org/10.1007/s12517-015-2222-8

    Article  Google Scholar 

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur 32(1):49–54

    Article  Google Scholar 

  • Chen CW, Oguchi T, Hayakawa YS, Saito H, Chen H (2017) Relationship between landslide size and rainfall conditions in Taiwan. Landslides 14(3):1235–1240. https://doi.org/10.1007/s10346-016-0790-7

    Article  Google Scholar 

  • Collins BD, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9(5):395–400. https://doi.org/10.1038/ngeo2686

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  • De Smet K, Smith TR (2001) Algeria. Antelopes. Part 4: North Africa, the Middle East, and Asia. Global survey and regional action plans 22

  • Delonca A, Gunzburger Y, Verdel T (2014) Statistical correlation between meteorological and rockfall databases. Nat Hazards Earth Syst Sci 14(8):1953–1964. https://doi.org/10.5194/nhess-14-1953-2014

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgun A (2015) Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar–Resadiye (Tokat, Turkey). Arab J Geosci 8(3):1801–1812. https://doi.org/10.1007/s12517-014-1332-z

    Article  Google Scholar 

  • Dikshit A, Sarkar R, Pradhan B, Acharya S, Alamri AM (2020) Spatial landslide risk assessment at Phuentsholing, Bhutan. Geosciences 10(4):131

    Article  Google Scholar 

  • Djerbal L, Melbouci B (2013) Contribution to the mapping of the landslide of Ain El Hammam (Algeria). Adv Mater Res 601:332–336. https://doi.org/10.4028/www.scientific.net/AMR.601.332

    Article  Google Scholar 

  • DK News (2016) Online newspaper article, “Intempéries: circulation automobile fortement perturbée sur l’axe Chiffa-Médéa suite à des éboulements” “Bad weather: Traffic disruptions on the Chiffa-Medea section following landslides”, DK NEWS.com , 23-12. Available at : http://www.dknews-dz.com/article/72756-intemperies-circulation-automobile-fortement-perturbee-sur-laxe-chiffa-medea-suite-a-des-eboulements.html

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ 662:332–346

    Article  Google Scholar 

  • Durand Delga M (1969) Mise au point sur la structure du Nord-Est de la Berbérie. Publ. Serv. Carte géol. Algérie, NS. Bull. Soc. Géol. Fr 13(7):328–337

    Google Scholar 

  • Effat HA, Hegazy MN (2014) Mapping landslide susceptibility using satellite data and spatial multi-criteria evaluation: the case of Helwan District, Cairo. Applied Geomatics 6(4):215–228. https://doi.org/10.1007/s12518-014-0137-9

    Article  Google Scholar 

  • El Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters 6(1). https://doi.org/10.1186/s40677-019-0119-7

  • Erener A, Mutlu A, Düzgün HS (2016) A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol 203:45–55

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65(3):2105–2128. https://doi.org/10.1007/s11069-012-0463-3

    Article  Google Scholar 

  • Fernández T, Jiménez J, Fernández P, El Hamdouni R, Cardenal FJ, Delgado J, Irigaray C, Chacón J (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 37

  • Fontiela JF, Borges J, Ouyed M, Bezzeghoud M, Idres M, Caldeira B, Boughacha MS, Carvalho J, Samai S, Aissa S (2017) A seismic hazard overview of the Mitidja Basin (Northern Algeria). AGU Fall Meeting Abstracts:S31B–S0811B

  • Ghani MFA, Simon N, Lai GT, Mohamed TRT, Rafek AG (2016) Kajian ketumpatan lineamen dalam penilaian potensi jatuhan batuan di kawasan Lembah Kinta. Sains Malaysiana 45(12):1887–1896. https://doi.org/10.17576/jsm-2016-4512-13

    Article  Google Scholar 

  • Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1–4):147–161. https://doi.org/10.1016/s0013-7952(97)81260-4

    Article  Google Scholar 

  • Guettouche (2019) Using a GIS to assess the land movements hazard: application on Berhoum Area, Hodna Basin, Algeria. J Geogr Inf Syst 11(2):166–184. https://doi.org/10.4236/jgis.2019.112012

    Article  Google Scholar 

  • Guettouche MS (2013) Modeling and risk assessment of landslides using fuzzy logic. Application on the slopes of the Algerian Tell (Algeria). Arab J Geosci 6(9):3163–3173. https://doi.org/10.1007/s12517-012-0607-5

    Article  Google Scholar 

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42(3):331–349. https://doi.org/10.1016/j.ijrmms.2004.11.003

    Article  Google Scholar 

  • Hadji R, Demdoum A, Limani Y (2013) Using multivariate approach and GIS applications to predict slope instability hazard

  • Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arab J Geosci 9(3). https://doi.org/10.1007/s12517-015-2169-9

  • Hepdeniz K (2020) Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey. Arab J Geosci 13(16):1–16

    Article  Google Scholar 

  • Hong H, Naghibi SA, Pourghasemi HR, Pradhan B (2016) GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci 9(2):1–26. https://doi.org/10.1007/s12517-015-2094-y

    Article  Google Scholar 

  • Hua Y, Wang X, Li Y, Xu P, Xia W (2021) Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 18(1):281–302

    Article  Google Scholar 

  • HuffPost Algérie (2015) Online newspaper article, “Eboulement aux gorges de la Chiffa: l'axe routier Blida- Médéa fermée à la circulation” “Rockfalls at the Chiffa gorges: the Blida-Médéa road axis closed to traffic” , HuffPost Algérie, 15/02 Available at : https://www.huffingtonpost.co.uk/2015/02/15/eboulement-aux-gorges-de-la-chiffa-laxe-routier-blida%2D%2Dmedea-fermee-a-la-circulation-_n_6686958.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAGmhXV6Za-qcgauQ0TsG_T29D5KHpZdTdLe768UeqCoN559P_6x5lDy1vpgQODrVmHQIghhSjerFhb7yEL5Qblkf9oQL_2RYdZRElryRVDNppA1pIG2NZefsxL1MX0xgaNOPBfk4l4erAGMYPwkHUOFtH5NHWudZo42l5Qi8cPt8

  • Hussin H, Fauzi NBT, Jamaluddin TA, Arifin MH (2017) Rock mass quality effected by lineament using rock mass rating (rmr)-case study from former quarry site. Earth Science Malaysia 1(2):13–16. https://doi.org/10.26480/esmy.02.2017.13.16

    Article  Google Scholar 

  • Ilinca V (2009) Rockfall hazard assessment case study: Lotru Valley and Olt Gorge*. Revista de Geomorfologie 11:101–108

    Google Scholar 

  • Javier DN, Kumar L (2019) Frequency ratio landslide susceptibility estimation in a tropical mountain region. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences - ISPRS Archives 42(3/W8):173–179. https://doi.org/10.5194/isprs-archives-XLII-3-W8-173-2019

    Article  Google Scholar 

  • Jebur MN, Pradhan B, Tehrany MS (2014) Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ 152:150–165. https://doi.org/10.1016/j.rse.2014.05.013

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439. https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Kayastha P (2015) Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: a case study from Garuwa sub-basin, East Nepal. Arab J Geosci 8(10):8601–8613. https://doi.org/10.1007/s12517-015-1831-6

    Article  Google Scholar 

  • Kechebour BEL, Talah A (2018) Durability of new roads: case study of the Algerian east west highway

  • Kouli M, Loupasakis C, Soupios P, Rozos D, Vallianatos F (2014) Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ Earth Sci 72(12):5197–5219. https://doi.org/10.1007/s12665-014-3389-0

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113

    Article  Google Scholar 

  • Leonardi G, Palamara R, Suraci F (2020) A fuzzy methodology to evaluate the landslide risk in road lifelines. Transportation Research Procedia 45:732–739

    Article  Google Scholar 

  • Liu H, Li X, Meng T, Liu Y (2020) Susceptibility mapping of damming landslide based on slope unit using frequency ratio model. Arab J Geosci 13(16):1–19

    Google Scholar 

  • Madun, & Omar (2001) Influence of discontinuity sets on slope failures at Pos Selim Highway, Malaysia. Geological Society of Malaysia Annual Geological Conference 27(3):2–7

    Google Scholar 

  • Mahdadi F, Boumezbeur A, Hadji R, Kanungo DP, Zahri F (2018) GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria. Arab J Geosci 11(17):1–21

    Article  Google Scholar 

  • Mani S, Saranaathan SE (2017) Landslide hazard zonation mapping on meso-scale in SH-37 ghat section, Nadugani, Gudalur, the Nilgiris, India. Arab J Geosci 10(7). https://doi.org/10.1007/s12517-017-2932-1

  • Maouche S, Harbi A (2018) The active faults of the Mitidja basin (North Central Algeria): what does the seismic history of the region tell us? A review. Euro-Mediterranean Journal for Environmental Integration 3(1):1–11

    Article  Google Scholar 

  • Martha TR, van Westen CJ, Kerle N, Jetten V, Vinod Kumar K (2013) Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184:139–150. https://doi.org/10.1016/j.geomorph.2012.12.001

    Article  Google Scholar 

  • Meghraoui M (1988) Géologie des zones sismiques du Nord de l’Algérie: Paléosismologie, tectonique active et synthèse sismotectonique. Paris 11

  • Mezughi TH, Juhari MA, Abdul GR, Ibrahim A (2011) Landslide susceptibility assessment using frequency ratio model applied to an area along the EW highway (Gerik-Jeli). Am J Environ Sci 7(1):43–50

    Article  Google Scholar 

  • Michael EA, Samanta S (2016) Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques. Modeling Earth Systems and Environment 2(2):1–15. https://doi.org/10.1007/s40808-016-0141-7

    Article  Google Scholar 

  • Moragues S, Lenzano MG, Lanfri M, Moreiras S, Lannutti E, Lenzano L (2021) Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina. Nat Hazards 105(1):915–941

    Article  Google Scholar 

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landf 22(2):107–120. https://doi.org/10.1002/(sici)1096-9837(199702)22:2<107::aid-esp680>3.3.co;2-l

    Article  Google Scholar 

  • Ouyed M, Idres M, Bourmatte A, Boughacha MS, Samai S, Yelles A, Haned A, Aidi C (2011) Attempt to identify seismic sources in the eastern Mitidja basin using gravity data and aftershock sequence of the Boumerdes (May 21, 2003; Algeria) earthquake. J Seismol 15(2):173–189

    Article  Google Scholar 

  • Paryani S, Neshat A, Javadi S, Pradhan B (2020) GIS-based comparison of the GA-LR ensemble method and statistical models at Sefiedrood Basin, Iran. Arab J Geosci 13(19):1–17

    Article  Google Scholar 

  • Pilger JD, Machado EL, de Assis Lawisch-Rodriguez A, Zappe AL, Rodriguez-Lopez DA (2020) Environmental impacts and cost overrun derived from adjustments of a road construction project setting. J Clean Prod 256:120731

    Article  Google Scholar 

  • Raghuvanshi TK, Ibrahim J, Ayalew D (2014) Slope stability susceptibility evaluation parameter (SSEP) rating scheme–an approach for landslide hazard zonation. J Afr Earth Sci 99:595–612

    Article  Google Scholar 

  • Ramli MF, Yusof N, Yusoff MK, Juahir H, Shafri HZM (2010) Lineament mapping and its application in landslide hazard assessment: a review. Bull Eng Geol Environ 69(2):215–233. https://doi.org/10.1007/s10064-009-0255-5

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process Mcgraw Hill, New York. Agricultural Economics Review, 70

  • Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65(1):523–543. https://doi.org/10.1007/s11069-012-0381-4

    Article  Google Scholar 

  • Sass O (2005) Temporal variability of rockfall in the Bavarian Alps, Germany. Arct Antarct Alp Res 37(4):564–573. https://doi.org/10.1657/1523-0430(2005)037[0564:TVORIT]2.0.CO;2

    Article  Google Scholar 

  • Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci Rep 5:1–15. https://doi.org/10.1038/srep09899

    Article  Google Scholar 

  • Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques–a review. Geoenvironmental Disasters 7:1–19

    Article  Google Scholar 

  • Shirzadi A, Saro L, Hyun Joo O, Chapi K (2012) A GIS-based logistic regression model in rockfall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Nat Hazards 64(2):1639–1656. https://doi.org/10.1007/s11069-012-0321-3

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76(2). https://doi.org/10.1007/s12665-016-6374-y

  • Singh, & Kumar (2017) Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arab J Geosci 10(24). https://doi.org/10.1007/s12517-017-3315-3

  • Singh K, Arya AK, Agarwal KK (2020) Landslide occurrences along lineaments on NH-154A, Chamba, Himachal Pradesh; extracted from Satellite Data Landsat 8, India. Journal of the Indian Society of Remote Sensing 48(5):791–803. https://doi.org/10.1007/s12524-020-01113-8

    Article  Google Scholar 

  • Taylor FE, Tarolli P, Malamud BD (2020) Preface: landslide–transport network interactions. Nat Hazards Earth Syst Sci 20(10):2585–2590

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  • Vlcko J, Jezny M, Pagacova Z (2005) Influence of thermal expansion on slope displacements (C101-2). Landslides:71–74. https://doi.org/10.1007/3-540-28680-2_7

  • Wang XT, Li SC, Ma XY, Xue YG, Hu J, Li ZQ (2017) Risk assessment of rockfall hazards in a tunnel portal section based on normal cloud model. Pol J Environ Stud 26(5):2295–2306. https://doi.org/10.15244/pjoes/68427

    Article  Google Scholar 

  • Yan Y, Ashraf MA (2020) The application of the intelligent algorithm in the prevention and early warning of mountain mass landslide disaster. Arab J Geosci 13(2):1–6

    Article  Google Scholar 

  • Ye S, Tang H, Chen H, Zhu H (2010) Stability evaluation of rockfall based on AHP-fuzzy method. Proceedings - 2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010, 3(Fskd), 1369–1373. https://doi.org/10.1109/FSKD.2010.5569089

  • Yongli Y, Aissa MH (2016) Geotechnical characteristics of Miocenemarl in the region of Medea North-South Highway. Algeria. 10(9):940–944

    Google Scholar 

  • Yusof NM, Pradhan B, Shafri HZM, Jebur MN, Yusoff Z (2015) Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arab J Geosci 8(11):9789–9800. https://doi.org/10.1007/s12517-015-1937-x

    Article  Google Scholar 

  • Zhang Q, Yu H, Li Z, Zhang G, Ma DT (2020) Assessing potential likelihood and impacts of landslides on transportation network vulnerability. Transp Res Part D: Transp Environ 82:102304

    Article  Google Scholar 

  • Zhou S, Zhang Y, Tan X, Abbas SM (2021) A comparative study of the bivariate, multivariate and machine-learning-based statistical models for landslide susceptibility mapping in a seismic-prone region in China. Arab J Geosci 14(6):440. https://doi.org/10.1007/s12517-021-06630-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Agency for Hydraulic Resources (ANRH) and the National Office of Meteorology (ONM) for providing geological and climatic data. Thanks also to the public works departments of Blida and Medea for providing various information needed in this work. We would also like to thank Miss Zoubida Nemer and Dr Salah Eddine Tachi for revising the English language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeldjalil Goumrasa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Stefan Grab

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goumrasa, A., Guendouz, M. & Guettouche, M.S. GIS-Based Multi-Criteria Decision Analysis Approach (GIS-MCDA) for investigating mass movements’ hazard susceptibility along the first section of the Algerian North-South Highway. Arab J Geosci 14, 850 (2021). https://doi.org/10.1007/s12517-021-07124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07124-0

Keywords

Navigation