Skip to main content

Advertisement

Log in

A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Identifying highly favorable areas related to a particular mineralization type is the main objective of mineral prospectivity modeling (MPM). The northwestern portion of Ahar-Arasbaran porphyry copper belt (AAPCB) is situated within the Urumieh-Dokhtar magmatic belt (UDMB). Because of owning many worthwhile Cu-Mo and Cu-Au porphyry deposits, this area is entitled to incorporate diverse spatial evidence layers for the MPM. In this paper, a hybrid AHP-VIKOR, as an improved knowledge-driven MPM procedure has been proposed for integration of various exploration evidence layers. For this, the AHP is used to calculate important weights of spatial criteria while the VIKOR is applied to outline ultimate prospectivity model. Six effective spatial evidence layers pertaining to the Varzaghan District are selected: (1) multi-elemental geochemical layer of Cu-Mo-Bi-Au; (2) remotely sensed data of argillic, phyllic, and iron oxide alteration layers; and (3) geological and structural layers of Oligo-Miocene intrusions and fault. In addition, a fuzzy prospectivity model (γ = 0.9) is implemented to assess the AHP-VIKOR approach. Two credible validation methods comprising normalized density index and success rate curve are adapted for quantitative evaluation of predictive models and enhancing the probability of exploration success. The achieved results proved the higher accuracy of the AHP-VIKOR model compared with the fuzzy model in delimiting the favorable areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abedi M, Norouzi GH (2012) Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. J Appl Geophys 83:35–45

    Article  Google Scholar 

  • Abedi M, Torabi SA, Norouzi GH, Hamzeh M (2012) ELECTRE III: a knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. J Appl Geophys 87:9–18

    Article  Google Scholar 

  • Abedi M, Torabi SA, Norouzi GH (2013) Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Boll Geofis Teor Appl 54:145–164

  • Abedi M, Mohammadi R, Norouzi GH, Mohammadi MSM (2016) A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arab J Geosci 9(6):482

    Article  Google Scholar 

  • Abedi M, Kashani SBM, Norouzi GH, Yousefi M (2017) A deposit scale mineral prospectivity analysis: a comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. J Afr Earth Sci 128:127–146

    Article  Google Scholar 

  • Afzal P, Alghalandis YF, Khakzad A, Moarefvand P, Omran NR (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232

    Article  Google Scholar 

  • Afzal P, Mirzaei M, Yousefi M, Adib A, Khalajmasoumi M, Zarifi AZ, Yasrebi AB (2016) Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. J Afr Earth Sci 119:139–149

    Article  Google Scholar 

  • Aghazadeh M, Hou Z, Badrzadeh Z, Zhou L (2015) Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol Rev 70:385–406

    Article  Google Scholar 

  • Agterberg F P, & Bonham-Carter G F (1999) Logistic regression and weights of evidence modeling in mineral exploration. In Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado (Vol. 483, p. 490)

  • Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. Comput Geol 63:1–21

    Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • An P (1991) Application of fuzzy set theory to integrated mineral exploration. Can J Explor Geophys 27:1–11

    Google Scholar 

  • Asadi HH, Sansoleimani A, Fatehi M, Carranza EJM (2016) An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: a case study from Salafchegan area (Central Iran). Nat Resour Res 25:417–429

    Article  Google Scholar 

  • Ataei M, Sereshki F, Jamshidi M, Jalali SME (2008) Suitable mining method for Golbini No. 8 deposit in Jajarm (Iran) using TOPSIS method. Min Technol 117:1–5

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, Oxford, 398 pp

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical approach in the earth sciences. Geological Survey of Canada 89:171–183

  • Carranza E J M (2008) Geochemical anomaly and mineral prospectivity mapping in GIS(Vol. 11). Elsevier

  • Carranza EJM (2011) Geocomputation of mineral exploration targets. Comput Geosci 37:1907–1916

    Article  Google Scholar 

  • Carranza EJM (2017) Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Nat Resour Res 26(4):379–410

    Article  Google Scholar 

  • Carranza EJM, Hale M (1997) A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. J Geochem Explor 60:157–171

    Article  Google Scholar 

  • Carranza EJM, Hale M (2001) Logistic regression for geologically constrained mapping of gold potential, Baguio District, Philippines. Explor Min Geol 10:165–175

    Article  Google Scholar 

  • Carranza EJM, Hale M (2002) Where are porphyry copper deposits spatially localized? A case study in Benguet Province, Philippines. Nat Resour Res 11:45–59

    Article  Google Scholar 

  • Carranza EJM, Laborte AG (2015) Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput Geosci 74:60–70

    Article  Google Scholar 

  • Carranza EJM, Hale M, Faassen C (2008) Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geol Rev 33:536–558

    Article  Google Scholar 

  • Carranza EJM, Mangaoang JC, Hale M (1999) Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Nat Resour Res 8:165–173

    Article  Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32:314–324

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1995) Multifractal modeling and spatial point processes. Math Geol 27:831–845

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (2009) Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci 35:234–244

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240

    Article  Google Scholar 

  • Dilek Y, Imamverdiyev N, Altunkaynak Ş (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52:536–578

    Article  Google Scholar 

  • Geranian H, Tabatabaei SH, Asadi HH, Carranza EJM (2016) Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Nat Resour Res 25:45–159

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A (2018) Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. C R Geosci 350:180–191

    Article  Google Scholar 

  • Hezarkhani A (2006) Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. J Asian Earth Sci 27:326–340

    Article  Google Scholar 

  • Hosseinali F, Alesheikh AA (2008) Weighting spatial information in GIS for copper mining exploration. Am J Appl Sci 5:1187–1198

    Article  Google Scholar 

  • Jamali H, Dilek Y, Daliran F, Yaghubpur A, Mehrabi B (2010) Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran. Int Geol Rev 52:608–630

    Article  Google Scholar 

  • Maghsoudi, A, Rahmani M, Rashidi B (2005) Gold deposits and indications of Iran

  • Maghsoudi A, Yazdi M, Mehrpartou M, Vosoughi M, Younesi S (2014) Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. J Asian Earth Sci 79:932–941

    Article  Google Scholar 

  • Maghsoudi A, Yazdi M, Mehrpartou M, & Vosoghi Abideni M (2009) Geochemical zonation in Mirkoh Alimirza area, Arasbaran zone, NW IRAN. In: 19th GoldschmidtTM Conference, Davos, Switzerland

  • Mandelbrot BB, Pignoni R (1983) The fractal geometry of nature (Vol. 173). New York: WH Freeman

  • Mehrpartou M (1993) Geological map of Varzaghan, scale 1: 1,000,000. Geological Survey of Iran

  • Mihalasky MJ, Bonham-Carter GF (2001) Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Nat Resour Res 10:209–226

    Article  Google Scholar 

  • Najafi A, Karimpour MH, Ghaderi M (2014) Application of fuzzy AHP method to IOCG prospectivity mapping: a case study in Taherabad prospecting area, eastern Iran. Int J Appl Earth Obs 33:142–154

    Article  Google Scholar 

  • Nykänen V, Groves DI, Ojala VJ, Eilu P, Gardoll SJ (2008) Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Aust J Earth Sci 55:25–38

    Article  Google Scholar 

  • Opricovic S (1998) Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade 2:5–21

    Google Scholar 

  • Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156:445–455

    Article  Google Scholar 

  • Pan G, Harris DP (2000) Information synthesis for mineral exploration. Oxford Univ. Press, New York

    Google Scholar 

  • Parsa M, Maghsoudi A, Ghezelbash R (2016c) Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arab J Geosci 9(4):260

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2016a) Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. J Afr Earth Sci 114:228–241

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2016b) Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. J Geochem Explor 165:111–124

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M (2017a) An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. Int J Appl Earth Obs 58:157–167

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M (2017b) A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Nat Resour Res:1–14

  • Parsa M, Maghsoudi A, Yousefi M, Carranza EJM (2017c) Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. J Afr Earth Sci 128:5–15

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2017d) Multifractal analysis of stream sediment geochemical data: implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. J Geochem Explor

  • Parsa M, Maghsoudi A, Carranza EJM, Yousefi M (2017e) Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar area, NW Iran. Nat Resour Res:1–13

  • Parsa M, Maghsoudi A, Yousefi M (2018) Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan District, NW Iran. Ore Geol Rev 92:97–112

    Article  Google Scholar 

  • Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50(3):325–346

    Article  Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2003) Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Nat Resour Res 12:155–171

    Article  Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2004) A hybrid neuro-fuzzy model for mineral potential mapping. Math Geol 36:803–826

    Article  Google Scholar 

  • Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42:1309–1323

    Article  Google Scholar 

  • Raines GL (2008) Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Nat Resour Res 17(2):87–97

    Article  Google Scholar 

  • Ranjbar H, Masoumi F, Carranza EJM (2011) Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. Int J Remote Sens 32:3309–3327

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Chica-Olmo M, Chica-Rivas M (2014) Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, southern Spain. Int J Geogr Inf Sci 28:1336–1354

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saaty T L (1980) Analytic hierarchy process. John Wiley & Sons, Ltd.

  • Saaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces 24:19–43

    Article  Google Scholar 

  • Saaty TL (1995) Transport planning with multiple criteria: the analytic hierarchy process applications and progress review. J Adv Transport 29:81–126

    Article  Google Scholar 

  • Saaty T L (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS Publications

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Tangestani MH, Moore F (2001) Comparison of three principal component analysis techniques to porphyry copper alteration mapping: a case study, Meiduk area, Kerman, Iran. Can J Remote Sens 27:176–182

    Article  Google Scholar 

  • Wang YJ (2008) Applying FMCDM to evaluate financial performance of domestic airlines in Taiwan. Expert Syst Appl 34:1837–1845

    Article  Google Scholar 

  • Wilkinson L, Grunsky E C, Harris J B (1999) Building a lithogeochemical dataset for GIS analysis: methodology, problems and solutions. Natural resources Canada, Geological Survey of Canada

  • Yousefi M, Carranza EJM (2015a) Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput Geosci 83:72–79

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015b) Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci 74:97–109

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015c) Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput Geosci 79:69–81

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2017) Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. J Afr Earth Sci 128:47–60

    Article  Google Scholar 

  • Yousefi M, Carranza EJM, Kamkar-Rouhani A (2013) Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. J Geochem Explor 128:88–96

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115:24–35

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  Google Scholar 

  • Zimmermann HJ, Zysno P (1980) Latent connectives in human decision making. Fuzzy Sets Syst 4:37–51

    Article  Google Scholar 

  • Zuo R, Carranza EJM (2011) Support vector machine: a tool for mapping mineral prospectivity. Comput Geosci 37:1967–1975

    Article  Google Scholar 

  • Zuo R, Zhang Z, Zhang D, Carranza EJM, Wang H (2015) Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in southwestern Fujian Province, China. Ore Geol Rev 71:502–515

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the handling editor and two anonymous reviewers for their constructive comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelbash, R., Maghsoudi, A. A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arab J Geosci 11, 275 (2018). https://doi.org/10.1007/s12517-018-3624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3624-1

Keywords

Navigation