Skip to main content

Advertisement

Log in

Prospectivity Mapping for Porphyry Cu–Mo Mineralization in the Eastern Tianshan, Xinjiang, Northwestern China

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In order to comprehensively utilize regional-scale geological, geochemical and geophysical datasets for future exploration of undiscovered porphyry Cu–Mo polymetallic deposits (PCMPDs) in the Chinese Eastern Tianshan orogenic belt, three data-driven mineral prospectivity mapping (MPM) methods, namely ordinary weights of evidence (WofE), fuzzy weights of evidence (FWofE) and logistic regression (LR), were employed to integrate these datasets for mapping prospectivity of undiscovered PCMPDs. Firstly, the geological setting and mineralization of PCMPDs in the Eastern Tianshan district are reviewed. Then, spatial datasets based on geological maps, stream sediment geochemical data, and Bouguer gravity and aeromagnetic data are introduced, and on the basis of the prospecting model for PCMPDs, layers of structural, lithological, geophysical and geochemical evidences are constructed using the spatial datasets by means of GIS-based techniques. Finally, these evidential layers were integrated by using the WofE, FWofE and LR methods to obtain posterior probability maps of PCMPDs and the results are critically compared. The main conclusions are that: (1) the porphyry Cu–Mo mineralization in the Eastern Tianshan was occurred in the subduction boundary of the Late Paleozoic Dananhu-Dacaotan arc system of Kanguertag-Huangshan deep fault belt. This geological inference is supported by all the data-driven MPM methods; (2) the conditional independence assumption for both WofE and FWofE can be easily violated in practical applications. This issue seems very difficult to be circumvented due to geological correlations of evidence layers; (3) the uncertainty of the LR modeling approach particularly with respect to models using multiclass response variables mainly arises from over-fitting of the (ln-transformed) linear relationship; and (4) if there is no need for estimation of the number of undiscovered PCMPDs, the prospectivity map biasedly estimated by either WofE or FWofE modeling can be recommended for targeting new exploration areas with more detailed reconnaissance of potential undiscovered PCMPDs. Otherwise, the prospectivity map unbiasedly estimated by LR modeling with binary evidence modeling approach can be priority of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Agterberg, F. P. (1974a). Automatic contouring of geological maps to detect target areas for mineral exploration. Mathematical Geology,6, 373–395.

    Google Scholar 

  • Agterberg, F. P. (1974b). Geomathematics: Mathematical Background and Geo-Science Applications. Amsterdam: Elsevier.

    Google Scholar 

  • Agterberg, F. P. (1989). Computer programs for mineral exploration. Science,245, 76–81.

    Google Scholar 

  • Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources,1, 39–50.

    Google Scholar 

  • Agterberg, F. P. (2011). A modified weights-of-evidence method for regional mineral resource estimation. Natural Resources Research,20, 95–101.

    Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research,14, 1–17.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. M., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In J. C. Davis & U. C. Herzfeld (Eds.), Proceedings computers in geology, 25 years of progress. Oxford: Oxford University Press.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer applications in resource estimation. Oxford: Pergamon Press.

    Google Scholar 

  • Agterberg, F. P., & Cheng, Q. M. (2002). Conditional independence test for Weights-of-Evidence modeling. Natural Resources Research,11, 249–255.

    Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics,27, 1–11.

    Google Scholar 

  • BGEDXP. (2009). The 1:250,000 Geological and Structural Maps of Shanshan. Wupu, Hami, Qincheng, Pa’ergangtage, Daheishan, and Yamansu, unpublished maps (In Chinese). Urumqi: Bureau of Geological Exploration & Development of Xinjiang Province (BGEDXP).

  • Bonham-Carter, G. F. (1991). Integration of geoscientific data using GIS. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographic information systems: Principles and applications (Vol. 2). London: Longman.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modeling with GIS (Computer Methods in the Geosciences). New York: Pergamon.

    Google Scholar 

  • Bonham-Carter, G. F., & Agterberg, F. P. (1990). Application of a microcomputer based geographic information system to mineral potential mapping. In T. Hanley & D. F. Merriam (Eds.), Microcomputers in geology (Vol. 2). Oxford: Pergamon Press.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing,54, 1585–1592.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modeling: A new approach to mapping mineral potential. In G. F. Bonham-Carter & F. P. Agterberg (Eds.), Statistical applications in the earth sciences. Ottawa: Geological Survey of Canada.

    Google Scholar 

  • Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., & Gott, G. B. (1977). Weighted characteristics analysis of spatially dependent mineral deposit data. Mathematical Geology,9, 309–311.

    Google Scholar 

  • Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research,13, 173–187.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS (Handbook of Exploration and Environmental Geochemistry). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2011). Geocomputation of mineral exploration targets. Computers & Geosciences,37, 1907–1916.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology,10, 165–175.

    Google Scholar 

  • Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research,8, 165–173.

    Google Scholar 

  • Chen, Z. C., Liu, H. F., & Liu, L. (1994). Formation and evolution of the Central Tianshan orogenic belt. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Chen, Y. C., Liu, D. Q., Tang, Y. L., Wang, D. H., Dong, L. H., Xu, X., et al. (2008). Mineral resources and mineralization system in Tianshan, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Cheng, Q. M. (2008). Geodata analysis system (GeoDAS) for mineral exploration: User’s guide and exercise manual. Material for the training workshop on GeoDAS held at China University of Geosciences, Wuhan. Oct., 2008, 144 pp (in Chinese).

  • Cheng, Q. M. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration,122, 55–70.

    Google Scholar 

  • Cheng, Q. M., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research,8, 27–35.

    Google Scholar 

  • Cheng, Q. M., Agterberg, F. P., & Bonham-Carter, G. F. (1994). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration,56, 183–195.

    Google Scholar 

  • Chung, C. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Mathematical Geology,12, 473–488.

    Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources,2, 122–139.

    Google Scholar 

  • Daniel, W. W. (1990). Applied nonparametric statistics (2nd ed.). Boston: PWS-Kent, Cengage Learning.

    Google Scholar 

  • David, W., & Hosmer, J. R. (2013). Applied logistic regression. New Jersey: Wiley.

    Google Scholar 

  • Deng, M. F. (2009). A conditional dependence adjusted weights of evidence model. Natural Resources Research,18, 249–258.

    Google Scholar 

  • Gao, J. F., Zhou, M. F., Qi, L., Chen, W. T., & Huang, X. W. (2015). Chalcophile elemental compositions and origin of the Tuwu porphyry Cu deposit, NW China. Ore Geology Reviews,66, 403–421.

    Google Scholar 

  • Grunsky, E. C. (1986). Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data. Journal of Geochemical Exploration,25, 157–183.

    Google Scholar 

  • Grunsky, E. C. (2010). The interpretation of geochemical survey data: Geochemistry. Exploration, Environment Analysis,10, 27–74.

    Google Scholar 

  • Harris, D. P., & Pan, G. C. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research,8, 93–109.

    Google Scholar 

  • Harris, J. R., Wilkinson, L., & Grunsky, E. C. (2000). Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: application of Geographic Information Systems (GIS) technology. Ore Geology Reviews,16, 107–143.

    Google Scholar 

  • Harris, J. R., Wilkinson, L., Grunsky, E. C., Heather, K., & Ayer, J. (1999). Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. Journal of Geochemical Exploration,67, 301–334.

    Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze greenstone belt, Ontario, Canada. Natural Resources Research,10, 91–124.

    Google Scholar 

  • Harris, D. P., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. C. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research,12, 241–255.

    Google Scholar 

  • Hu, A., Jahn, B. M., Zhang, G., Chen, Y., & Zhang, Q. (2000). Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics,328, 15–51.

    Google Scholar 

  • Huang, X. W., Qi, L., Gao, J. F., & Zhou, M. F. (2013). First reliable Re-Os ages of pyrite and stable isotope compositions of Fe(-Cu) deposits in the Hami region, Eastern Tianshan orogenic belt, NW China. Resource Geology,63, 166–187.

    Google Scholar 

  • Ji, J. S., Tao, H. X., Zeng, Z. R., Yang, X. K., & Zhang, L. C. (1994). Geology of the Kanggurtag gold mineralization zone and exploration, East Tianshan. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Journel, A. G. (2002). Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses. Mathematical Geology,34, 573–596.

    Google Scholar 

  • Li, J. Y., Wang, K. Z., Li, W. Q., Guo, H. C., Song, B., Wang, Y., et al. (2002). Tectonic evolution since the Late Paleozoic and mineral prospecting in Eastern Tianshan Mountains, NW China. Xinjiang Geology,20, 295–301. (in Chinese with English abstract).

    Google Scholar 

  • Li, W. P., Wang, T., Li, J. B., Kang, X., Yu, F. S., Han, Q. J., et al. (2001). The U-Pb age of zircon from Late Caledonian granitoids in Hongliuhe area, East Tianshan mountains, Northwest China and its geological implications. Acta Geolscientia Sinica,22, 231–235. (in Chinese with English abstract).

    Google Scholar 

  • Li, H. Q., Xie, C. F., & Chang, H. L. (1998). Study on metallogenetic chronology of nonferrous and precious metallic ore deposits in northern Xinjiang, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Liu, D. Q., Chen, Y. C., & Wang, D. H. (2003). A discussion on problems related to mineralisation of Tuwu-Yandong Cu-Mo ore field in Hami, Xinjiang. Mineral Deposits,22, 334–344. (in Chinese with English abstract).

    Google Scholar 

  • Liu, D. Q., Tang, Y. L., & Zhou, R. H. (2005). Copper deposits and nickel deposits in Xinjiang, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Lu, B., Meng, G. X., Yang, Y. Q., Yan, J. Y., Zhao, J. H., Deng, Z., et al. (2014). Discover of Layikeleke insidious porphyry deposit in Xinjiang, Re-Os isotope dating and its geological implications. Acta Petrologica Sinica,30, 1168–1178. (in Chinese with English abstract).

    Google Scholar 

  • Ma, R. S., Shu, L. S., & Sun, J. Q. (1997). Tectonic framework and crust evolution of Eastern Tianshan Mountains. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., & Bowen, R. W. (1983). Characteristics analysis-1981: Final program and a possible discovery. Mathematical Geology,15, 59–83.

    Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Nevada great basin. Natural Resources Research,10, 209–226.

    Google Scholar 

  • Moon, W. M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing,28, 711–720.

    Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni-Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews,71, 853–860.

    Google Scholar 

  • Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen, K., Cook, N., et al. (2017). Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, Northern Finland. Natural Resources Research,26, 571–584.

    Google Scholar 

  • Nykänen, V., & Ojala, V. J. (2007). Spatial analysis techniques as successful mineral potential mapping tools for orogenic gold deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research,16, 85–92.

    Google Scholar 

  • Pan, G. C., & Harris, D. P. (2000). Information Synthesis for Mineral Exploration. New York: Oxford University Press Inc.

    Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Caraja’s Mineral Province, Brazil. Computers & Geosciences,35, 675–687.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Exploration and Mining Geology,10, 273–287.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research,15, 1–14.

    Google Scholar 

  • Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews,38, 184–196.

    Google Scholar 

  • Porwal, A., & Sides, E. J. (2000). A predictive model for base metal exploration in a GIS environment. International Archives of Photogrammetry and Remote Sensing,XXXIII, 1178–1184.

    Google Scholar 

  • Qin, K. Z., Sun, S., Li, J. L., Fang, T. G., Wang, S. L., & Liu, W. (2002). Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance. Resource Geology,52, 291–300.

    Google Scholar 

  • Raines, G. L. (1999). Evaluation of weights of evidence to predict epithermal gold deposits in the great basin of the western United States. Natural Resources Research,8, 257–276.

    Google Scholar 

  • Rui, Z. Y., Goldfarb, R. J., Qiu, Y. M., Zhou, T. H., Chen, R. Y., Pirajno, F., et al. (2002). Paleozoic-early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China. Mineralium Deposita,37, 393–418.

    Google Scholar 

  • Schaeben, H. (2014a). A mathematical view of weights-of-evidence, conditional independence, and logistic regression in terms of Markov random fields. Mathematical Geosciences,46, 691–709.

    Google Scholar 

  • Schaeben, H. (2014b). Targeting: Logistic regression, special cases and extensions. ISPRS International Journal of Geo-Information,3, 1387–1411.

    Google Scholar 

  • Shu, L. S., Charvet, J., Lu, H. F., & Laurent, S. C. (2002). Paleozoic accretion-collision events and kinematics of ductile deformation in the eastern part of the Southern-Central Tianshan belt, China. Acta Geologica Sinica-English Edition,76, 308–323.

    Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology,28, 1017–1023.

    Google Scholar 

  • Song, B., Li, J. Y., Li, W. Q., Wang, K. Z., & Wang, Y. (2002). SHRIMP dating of the Dananhu and Kezirkalasayi granitoids batholith in southern margin of Tuha Basin and their geological implication. Xinjiang Geology,20, 332–345. (in Chinese with English abstract).

    Google Scholar 

  • Souza Filho, C. R., Sawatzky, D. L., Raines, G. L., Bonham-Carter, G. F., & Looney, C. G. (2017). Spatial Data Modeler 5 (ArcSDM 5): ArcGIS geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks. https://github.com/gtkfi.

  • Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., Cheng, Q. M., & Pahani, A. (2005). An application of the new omnibus test for conditional independence in weights of evidence modelling. In J. R. Harris (Ed.), GIS applications in the earth sciences. Toronto: Geological Association of Canada.

    Google Scholar 

  • Wang, M. J., Cai, X., & Tu, C. L. (1997). Development and prospect of gravity prospecting in China. Acta Geophysical Sinica,40, 292–298. (in Chinese with English abstract).

    Google Scholar 

  • Wang, X. Q., Zhang, B. M., Lin, X., Xu, S. F., Yao, W. S., & Ye, R. (2016). Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geology Reviews,73, 417–431.

    Google Scholar 

  • Wang, Z. G., Zhu, X. Q., Bi, H., Wang, Y. L., Wu, B. Q., Zou, T. R., et al. (2006). Granites in Xinjiang, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Wu, X. C. (2004). MAPGIS geographic information system. Beijing: Publishing House of Electronics Industry. (in Chinese).

    Google Scholar 

  • Wu, G. G., Dong, L. H., Xue, C. J., Feng, J., Tan, H. D., Zhang, Z. C., et al. (2008). The main porphyry copper ore belts in Northern Xinjiang, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Xia, L. Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P., & Wang, L. S. (2004). Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geological Society of America Bulletin,116, 419–433.

    Google Scholar 

  • Xiao, F., Chen, J. G., Agterberg, F., & Wang, C. B. (2014). Element behavior analysis and its implications for geochemical anomaly identification: A case study for porphyry Cu-Mo deposits in Eastern Tianshan, China. Journal of Geochemical Exploration,145, 1–11.

    Google Scholar 

  • Xiao, B., Chen, H. Y., Hollings, P., Han, J. S., Wang, Y. F., Yang, J. T., et al. (2017). Magmatic evolution of the Tuwu-Yandong porphyry Cu belt, NW China: Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes. Gondwana Research,43, 74–91.

    Google Scholar 

  • Xiao, F., Chen, J. G., Zhang, Z. Y., Wang, C. B., Wu, G. M., & Agterberg, F. P. (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration,122, 90–100.

    Google Scholar 

  • Xiao, F., & Wang, Z. H. (2017). Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu-Mo polymetallic deposits exploration. Ore Geology Reviews,80, 1042–1055.

    Google Scholar 

  • Xiao, W. J., Zhang, L. C., Qin, K. Z., Sun, S., & Li, J. L. (2004). Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. American Journal of Science,304, 370–395.

    Google Scholar 

  • Xie, X. J., Mu, X. Z., & Ren, T. X. (1997). Geological mapping in China. Journal of Geochemical Exploration,60, 99–113.

    Google Scholar 

  • Yang, X. K., Ji, J. S., Zhang, L. C., & Zeng, Z. R. (1998). Basic features and gold prognosis of the regional ductile shear zone in Eastern Tianshan. Geotectonica et Metallogenica,22, 209–218. (in Chinese with English abstract).

    Google Scholar 

  • Yang, G. Q., Shi, Q. Y., & Yu, B. C. (1994). Status and development of airborne geophysical exploration in China. Acta Geophysical Sinica,37, 367–377. (in Chinese with English abstract).

    Google Scholar 

  • Yang, X. K., Tao, H. X., Luo, G. C., & Ji, J. S. (1996). Basic features of plate tectonics in Eastern Tianshan of China. Xinjiang Geology,14, 221–227. (in Chinese with English abstract).

    Google Scholar 

  • Yang, J. M., Zhang, Y. J., Deng, G., Xue, C. J., Fu, X. J., Yao, F. J., et al. (2008). The prospecting target optimization of copper ore belts of Tianshan, China. Beijing: Geological Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, D. J., Agterberg, F., Cheng, Q. M., & Zuo, R. G. (2014). A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Mathematical Geosciences,46, 869–885.

    Google Scholar 

  • Zhang, D. J., Cheng, Q. M., & Agterberg, F. P. (2017). Application of spatially weighted technology for mapping intermediate and felsic igneous rocks in Fujian Province, China. Journal of Geochemical Exploration,178, 55–66.

    Google Scholar 

  • Zhang, L. C., Ji, J. S., & Shen, Y. C. (2000). Geochemical characteristics and source of two-type ore-forming fluids in Kangurtag gold ore belt, east Tianshan. Acta Petrologica Sinica,16, 535–541. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, L. C., Xiao, W. J., Qin, K. Z., Ji, J. S., & Yang, X. K. (2004). Types, geological features and geodynamic significances of gold-copper deposits in the Kanggurtag metallogenic belt, eastern Tianshan, NW China. International Journal of Earth Sciences,93, 224–240.

    Google Scholar 

  • Zhao, J. X., Wang, Y. J., Fu, X. X., & Ward, S. H. (1989). An overview of exploration geophysics in China—1988. Oklahoma: Society of Exploration Geophysicists.

    Google Scholar 

  • Zhou, J. Y., Cui, B. F., Xiao, H. L., Cheng, S. Z., & Zhu, D. M. (2001). Kangguertag-Huangshan collision zone of bilateral subduction and its metallogenic model and prognosis in Xinjiang, China. Volcanology & Mineral Resources,22, 252–263. (in Chinese with English abstract).

    Google Scholar 

  • Zhou, T. F., Yuan, F., Zhang, D. Y., Fan, Y., Liu, S. A., Peng, M. X., et al. (2010). Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica,26, 478–502. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the guest editors of this special issue (Drs. Mark Mihalasky and Vesa Nykänen), the chief editor of NRR (Dr. John Carranza) and two anonymous reviewers for their constructive comments and suggestions. The main idea of this paper has been presented on IAMG2018, September 2–8, 2018, Olomouc, Czech Republic. This research was financially supported by the National Natural Science Foundation of China (Nos. 41872245, 41502310), the Fundamental Research Funds for the Central Universities (No. 17lgpy48) and the Natural Science Foundation of Guangdong Province, China (No. 2015A030310246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F., Wang, K., Hou, W. et al. Prospectivity Mapping for Porphyry Cu–Mo Mineralization in the Eastern Tianshan, Xinjiang, Northwestern China. Nat Resour Res 29, 89–113 (2020). https://doi.org/10.1007/s11053-019-09486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09486-5

Keywords

Navigation