Skip to main content

Advertisement

Log in

Prediction of new polymetallic mineralization prospectivity zones using a combination of remote sensing, geology, and geochemistry data in the northeastern part of the Saghro inlier, Moroccan Anti-Atlas belt

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the Anti-Atlas belt, the Saghro massif stands out as the most promising area for exploring bases and precious metals. It serves as a noteworthy example of effectively utilizing various geological layers by employing fuzzy logic operators to predict new targets and identify potential mining zones in this region. This paper demonstrates the integration of geoscience datasets in a GIS system, enabling the identification of significant targets for mineral exploration. The geo-information layers utilized included Neoproterozoic acid volcanic and intrusive rocks, hydrothermal alterations, faults, zones of structural complexity, geochemical anomalies, and mineral occurrences. The results highlighted that the boundary between the Neoproterozoic basement and its Paleozoic cover presents a crucial target for discovering mineral deposits and identifying new polymetallic mineralization zones with significant mining potential. Eight favorable zones have been identified, indicating the presence of Cu–Ag–Pb polymetallic mineralization and Ag–Hg mineralization associated with the late Neoproterozoic acid volcanic rocks of the Ouarzazate group. The outcomes of this study are invaluable for mineral exploration, serving as essential guidance for mining prospectors and advanced metallogenic investigation programs in the northeastern part of the Moroccan Saghro massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used in this paper are available upon request from the authors.

References

  • Abrams M, Yamaguchi Y (2019) Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sens 11(11):1394. https://doi.org/10.3390/rs11111394

    Article  Google Scholar 

  • Arlegui LE, Soriano MA (1998) Characterizing lineaments from satellite images and field studies in the Central Ebro Basin (NE Spain). Int J Remote Sens 19(16):3169–85. https://doi.org/10.1080/014311698214244

    Article  Google Scholar 

  • Bahrami Y, Hassani H, Maghsoudi A (2021) Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar Area, NW Iran. Geosyst Eng 24(1):18–30. https://doi.org/10.1080/12269328.2018.1557083

    Article  Google Scholar 

  • Bouabdellah M, Slack JF (2016) Mineral deposits of North Africa. Mineral resource reviews. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-31733-5

    Book  Google Scholar 

  • Brisebois D, Clark T, et al (2003) Géologie et ressources minérales de la partie est de la province de Grenville. Ressources naturelles, Faune et Parcs, Québec

  • Brown WM, Gedeon TD, Groves DI, Barnes RG (2000) Artificial neural networks: a new method for mineral prospectivity mapping. Aust J Earth Sci 47(4):757–70. https://doi.org/10.1046/j.1440-0952.2000.00807.x

    Article  Google Scholar 

  • Carranza EJM (2009) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry. 1st ed. v. 11. Elsevier, Amsterdam, Boston

  • Carranza EJM (2010) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem Explor Environ Anal 10(2):171–87. https://doi.org/10.1144/1467-7873/09-223

    Article  Google Scholar 

  • Carranza EJM, Hale M (1997) A Catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. J Geochem Explor 60(2):157–71. https://doi.org/10.1016/S0375-6742(97)00032-0

    Article  Google Scholar 

  • Chattoraj SL, Prasad G, Sharma RU, Champati Ray PK, Van Der Meer FD, Guha A, Beiranvand Pour A (2020) Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar Basin, Rajasthan, India. Int J Appl Earth Observ Geoinform 91(September):102162. https://doi.org/10.1016/j.jag.2020.102162

    Article  Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32(1):314–24. https://doi.org/10.1016/j.oregeorev.2006.10.002

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56(3):183–95. https://doi.org/10.1016/S0375-6742(96)00035-0

    Article  Google Scholar 

  • Choubert G (1952) Géologie du Maroc. Fasc. I : Histoire géologique du domaine de l’Anti-Atlas. Notes et Mémoires du Service Géologique du Maroc. No. 100

  • Choubert G (1963) Histoire Géologique du Précambrien de l’Anti-Atlas. Notes et Mémoires du Service Géologique du Maroc, no. 162

  • Clark RN, King TVV, Klejwa M, Swayze GA, Vergo N (1990) High Spectral resolution reflectance spectroscopy of minerals. J Geophys Res Solid Earth 95(B8):12653–80. https://doi.org/10.1029/JB095iB08p12653

    Article  Google Scholar 

  • Courba S, Hahou Y, Achmani J, Ouallali A, El Amrani M, Boudad L, Idrissi A et al (2023) Litho-structural and hydrothermal alteration mapping for mineral prospection in the Maider Basin of Morocco based on remote sensing and field investigations. Remote Sens Appl Soc Environ 31(August):100980. https://doi.org/10.1016/j.rsase.2023.100980

    Article  Google Scholar 

  • Dakir I, Benamara A, Aassoumi H, Ouallali A, Ait Bahammou Y (2019) Application of induced polarization and resistivity to the determination of the location of metalliferous veins in the Taroucht and Tabesbaste areas (Eastern Anti-Atlas Morocco). Int J Geophys. https://doi.org/10.1155/2019/5849019

    Article  Google Scholar 

  • Dal Piaz G, Malusà M, Schiavo A, Taj Eddine K, Algouti A, Benvenuti M, Eddebbi A, et al (2007) Carte géologique du Maroc au 1/50.000, feuille Taghazout. Notes et Mémoires du Service Géologique du Maroc, pp 519

  • Destombes S, Hollard H, Willefert S (1985) Lower Palaeozoic rocks of Morocco. Lower Palaeozoic of north-western and west-central Africa, pp 91–336

  • Du Dresnay R, Hindermeyer J, Emberger A, Caia J, Destombes S, Hollard H (1988) Carte géologique du Maroc au 1: 200 000, feuille Todgha –Maider.’ Notes et Mémoires du Service Géologique du Maroc. 243.

  • El Hmidi F, Chakiri S, Hafid M, Manar A, Bejjaji Z (2019) Electromagnetic survey to constraints ore mining exploration in the Eastern Anti-Atlas Belt (case of Imiter Inlier, Morocco): application of frequency electromagnetic helicopter-borne method. J Afr Earth Sci 150(February):595–606. https://doi.org/10.1016/j.jafrearsci.2018.09.014

    Article  Google Scholar 

  • Ennih N, Liégeois JP (2008) The boundaries of the West African Craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas Belt. Geol Soc Lond Spec Publ 297(1):1–17. https://doi.org/10.1144/SP297.1

    Article  Google Scholar 

  • Fatima K, Umar Khan Khattak M, Bakhsh Kausar A, Toqeer M, Haider N, Ur Rehman A (2017) Minerals identification and mapping using ASTER satellite image. J Appl Remote Sens 11(04):1. https://doi.org/10.1117/1.JRS.11.046006

    Article  Google Scholar 

  • Gasquet D, Levresse G, Cheilletz A, Azizi-Samir MR, Mouttaqi A (2005) Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African Times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition. Precamb Res 140(3–4):157–82. https://doi.org/10.1016/j.precamres.2005.06.009

    Article  Google Scholar 

  • Ghasemzadeh S, Maghsoudi A, Yousefi M, Mihalasky MJ (2019) Stream sediment geochemical data analysis for district-scale mineral exploration targeting: measuring the performance of the spatial U-statistic and C–A fractal modeling. Ore Geol Rev 113(October):103115. https://doi.org/10.1016/j.oregeorev.2019.103115

    Article  Google Scholar 

  • Haldar SK (2018) Mineral explorations: principles and applications. Elsevier.

  • Hefferan K, Soulaimani A, Samson SD, Admou H, Inglis J, Saquaque A, Chaib L, Heywood N (2014) A reconsideration of pan african orogenic cycle in the anti-atlas mountains, Morocco. J Afr Earth Sci 98(October):34–46. https://doi.org/10.1016/j.jafrearsci.2014.03.007

    Article  Google Scholar 

  • Hejja Y, Baidder L, Ibouh H, Nait Bba A, Soulaimani A, Gaouzi A, Maacha L (2020) Fractures distribution and basement-cover interaction in a polytectonic domain: a case study from the Saghro Massif (Eastern Anti-Atlas, Morocco). J Afr Earth Sci 162:103694. https://doi.org/10.1016/j.jafrearsci.2019.103694

    Article  Google Scholar 

  • Hejja Y, Bourdier JL, Gaouzi A, Baidder L, Tuduri L, Ennaciri A, Zakir A, Maacha L, Zouhair M (2022) Lithostratigraphy and structural framework of the Ediacaran volcano-plutonic complex of the Imiter Ag–Hg mining district (Jbel Saghro, Anti-Atlas, Morocco). J Afri Earth Sci 196(December):104687. https://doi.org/10.1016/j.jafrearsci.2022.104687

    Article  Google Scholar 

  • Hewson R, Cudahy T (2011) Issues affecting geological mapping with ASTER data: a case study of the Mt Fitton Area, South Australia. In: Ramachandran B, Justice CO, Abrams MJ (ed) Land remote sensing and global environmental change: NASA’s earth observing system and the science of ASTER and MODIS. 273–300. Remote Sensing and Digital Image Processing. Springer, New York. https://doi.org/10.1007/978-1-4419-6749-7_13

  • Hewson RD, Mah A, Dunne M (2003) Cudahy TJ (2003) Mapping mineralogical and structural relationships with satellite-borne ASTER and airborne geophysics at Broken Hill. ASEG Extend Abstr 2:1–4. https://doi.org/10.1071/ASEG2003ab072

    Article  Google Scholar 

  • Hewson RD, Cudahy TJ, Mizuhiko S, Ueda K, Mauger AJ (2005) Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens Environ Sci Results ASTER 99(1):159–72. https://doi.org/10.1016/j.rse.2005.04.025

    Article  Google Scholar 

  • Hewson RD, Cudahy TJ, Drake-Brockman J, Meyers J, Hashemi A (2006) Mapping geology associated with manganese mineralisation using spectral sensing techniques at Woodie Woodie, East Pilbara. Explor Geophys 37(4):389–400. https://doi.org/10.1071/EG06389

    Article  Google Scholar 

  • Hollard H, Choubert G, Bronner G, Marchand J, Sougy J (1985) Carte géologique du Maroc, Scale 1: 1 000 000. Notes et Mémoires du Service Géologique du Maroc 260(2).

  • Howarth RJ (1983) Regional geochemical mapping and its application to environmental studies. Appl Environ Geochem

  • Hung LQ, Ehlers M, Ulrich M, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi Tropical Karst catchment, Vietnam. Remote sensing for environmental monitoring, GIS applications, and geology V. Vol. 5983. SPIE, 2005. https://doi.org/10.1117/12.627699.

  • Lalor JH (1986) The olympic dam copper-uranium-gold deposit. Circum Pacific Council Publications, South Australia

    Google Scholar 

  • Leblanc M, Lancelot JR (1980) Interprétation géodynamique du domaine pan-africain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences. NRC Research Press Ottawa, Canada. https://doi.org/10.1139/e80-012.

  • Levresse G, Cheilletz A, Gasquet D, Reisberg L, Deloule E, Marty B, Kyser K (2004) Osmium, Sulphur, and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: evidence for a mantle source. Chem Geol 207:59–79. https://doi.org/10.1016/j.chemgeo.2004.02.004

    Article  Google Scholar 

  • Levresse G, Bouabdellah M, Cheilletz A, Gasquet D, Maacha L, Tritlla J, Banks D, Azizi Samir MR (2016) Degassing as the main ore-forming process at the giant Imiter Ag–Hg vein deposit in the Anti-Atlas Mountains, Morocco. In: Bouabdellah M, Slack JF (ed) Mineral deposits of North Africa. 85–106. Mineral Resource Reviews. Springer International Publishing, Cham https://doi.org/10.1007/978-3-319-31733-5_2

  • Levresse G, Bouabdellah M, Gasquet D, Cheilletz A (2017) Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas, Morocco): evidence from LA-ICP-MS data on fluid inclusions, halogen signatures, and stable isotopes (H, C, O)—a discussion. Econ Geol 112(5):1269–72. https://doi.org/10.5382/econgeo.112.5.dis1

    Article  Google Scholar 

  • Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77(2):167–75. https://doi.org/10.1016/S0375-6742(02)00276-5

    Article  Google Scholar 

  • Lima A (2018) Evaluation of geochemical background at regional and local scales by fractal filtering technique: case studies in selected Italian Areas. In: De Vivo B, Belkin HE, Lima A (ed) Environmental geochemistry (Second Edition). Elsevier, Amsterdam, pp 115–32. https://doi.org/10.1016/B978-0-444-63763-5.00016-1

  • Lima A, De Vivo B, Cicchella D, Cortini M, Albanese S (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Appl Geochem 18:1853–65. https://doi.org/10.1016/S0883-2927(03)00083-0

    Article  Google Scholar 

  • Lima A, Plant JA, De Vivo B, Tarvainen T, Albanese S, Cicchella D (2008) Interpolation methods for geochemical maps: A comparative study using arsenic data from European Stream Waters. Geochem Explorat Environ Anal 8(1):41–48. https://doi.org/10.1144/1467-7873/07-146

    Article  Google Scholar 

  • Macheyeki AS, Peter Kafumu D, Liu X, Yuan F (2020) Applied geochemistry: advances in mineral exploration techniques. Elsevier, Amsterdam

    Google Scholar 

  • Malusà M, Schiavo A, Taj Eddine K, Algouti A, Benvenuti M, Dal Piaz G, Eddebbi A, et al (2007) Notice explicative de la carte géologique du Maroc Au 1/50.000, Feuille Taghazout.’ Notes et Mémoires du Service Géologique du Maroc. 519 Bis.

  • Mamouch Y, Attou A, Miftah A, Ouchchen M, Dadi B, Moussaid A, Et-tayea Y, El Azmi M, Boualoul M (2023) Aeromagnetic data of the Kelâat M’Gouna Inlier (Jbel Saghro, Eastern Anti-Atlas, Morocco): geotectonic and mining implications. J Afr Earth Sci 197(January):104744. https://doi.org/10.1016/j.jafrearsci.2022.104744

    Article  Google Scholar 

  • Marjoribanks R (2010) Geological methods in mineral exploration and mining. Springer, Berlin

    Book  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros Magmatic Arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2(3):161–86. https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  • McClenaghan MB, Thorleifson LH, DiLabio RNW (2000) Till geochemical and indicator mineral methods in mineral exploration. Ore Geol Rev 16(3):145–66. https://doi.org/10.1016/S0169-1368(99)00028-1

    Article  Google Scholar 

  • Meigoony MS, Afzal P, Gholinejad M, Yasrebi AB, Sadeghi B (2014) Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 Sheet, Central Iran. Arab J Geosci 7(12):5333–43. https://doi.org/10.1007/s12517-013-1074-3

    Article  Google Scholar 

  • Miftah A, El Azzab D, Attou A, Manar A, Rachid A, Ramhy H (2018) Geochemical mapping of radioactive elements using helicopter-borne gamma-ray spectrometry (Tiouit, Eastern Anti-Atlas, Morocco): or occurrence and environmental impact. J Afr Sci 139:392–402. https://doi.org/10.1016/j.jafrearsci.2017.12.013

    Article  Google Scholar 

  • Miftah A, El Azzab D, Attou A, Ouchchen M, Mamouch Y, Achkouch L, Soulaimani A, Soulaimani S, Manar A (2022) Mapping of favourable mining areas in the Tiouit area by multispectral remote sensing and airborne gamma-ray spectrometry coupled with geochemical data (Eastern Anti-Atlas, Morocco). Appl Earth Sci 131(3):149–66. https://doi.org/10.1080/25726838.2022.2089967

    Article  Google Scholar 

  • Moon CJ, Whateley MKG, Evans AM (2006) Introduction to mineral exploration. Editon 2. Lackwell Publishing

  • Moradi M, Basiri S, Kananian A, Kabiri K (2015) Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz Iran. Earth Sci Inform 8(1):197–205. https://doi.org/10.1007/s12145-014-0151-9

    Article  Google Scholar 

  • Mouttaqi A, Rjimati EC, Maacha L, Michard A, Soulaimani A, Ibouh H (2011) Les principales mines du Maroc. Notes et Mémoires du Service Géologique du Maroc 9(564)

  • Nazarpour A, Omran NR, Paydar GP, Sadeghi B, Matroud F, Mehrabi Nejad A (2015) Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry 75:117–32. https://doi.org/10.1016/j.chemer.2014.11.002

    Article  Google Scholar 

  • Nforba MT, Egbenchung KA, Berinyuy NL, Mimba ME, Tangko Tangko E, Kouankap Nono GD (2020) Statistical evaluation of stream sediment geochemical data from Tchangue-Bikoui drainage system: a regional perspective, Southern Cameroon. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2020.1728023

    Article  Google Scholar 

  • Nykänen V, Groves DI, Ojala VJ, Eilu P, Gardoll SJ (2008) Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the Northern Fennoscandian Shield Finland. Aust J Earth Sci 55(1):25–38. https://doi.org/10.1080/08120090701581372

    Article  Google Scholar 

  • O’Driscoll EST, Campbell BI (1996) Mineral deposits related to Australian continental ring and rift structures with some terrestrial and planetary analogies. Global Tect Metallogeny. https://doi.org/10.1127/gtm/6/1996/83

    Article  Google Scholar 

  • Ousaid L, Hahou H, Admou H, Mouguina EM, Diani K, Ziyadi R, Aafir Z, Courba S, Lamchaimech A (2022) The Cu–Ag–Pb polymetallic mineralization of Agdim–Ait Elfersi Sector, North-Eastern part of the Saghro Massif, Morocco: geological setting, ore petrography and geochemistry. Iraqi Geol J. https://doi.org/10.46717/igj.55.1A.1Ms-2022-01-20

  • Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, El Hakour A, Deloule E, Féraud G (2007) Hydrothermal zircons: a tool for Ion Microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou Gold Deposit-Morocco). Chem Geol 245(3):135–61. https://doi.org/10.1016/j.chemgeo.2007.07.026

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1):1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, Chichester

    Book  Google Scholar 

  • Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42(3):522–35. https://doi.org/10.1190/1.1440723

    Article  Google Scholar 

  • Rowan LC, Mars JC, Simpson CJ (2005) Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 99(1–2):105–26. https://doi.org/10.1016/j.rse.2004.11.021

    Article  Google Scholar 

  • Sarala P, Rossi S (2000) The application of till geochemistry in exploration in the Rogen Moraine Area at Petäjävaara, Northern Finland. J Geochem Explorat 68(1):87–104. https://doi.org/10.1016/S0375-6742(99)00060-6

    Article  Google Scholar 

  • Seifert A, Česka GS (2013) Field Manual for Geochemical Exploration. Czech Geological Survey, Praque

    Google Scholar 

  • Serrano-Guerrero J, Romero FP, Olivas JA (2021) Fuzzy logic applied to opinion mining: a review. Knowl Based Syst 222(June):107018. https://doi.org/10.1016/j.knosys.2021.107018

    Article  Google Scholar 

  • Soulaimani A, Michard A, Ouanaimi H, Baidder L, Raddi Y, Saddiqi O, Rjimati EC (2014) Late Ediacaran-Cambrian structures and their reactivation during the variscan and alpine cycles in the Anti-Atlas (Morocco). J Afr Earth Sci 98(October):94–112. https://doi.org/10.1016/j.jafrearsci.2014.04.025

    Article  Google Scholar 

  • Suzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in central Turkey. Int J Remote Sens 19(6):1101–14. https://doi.org/10.1080/014311698215621

    Article  Google Scholar 

  • Talih A, Aboussalam Z, Becker R, Saadi M, Benmlih A (2022) Stratigraphy and tectono-sedimentary processes of allochthonous and autochthonous Devonian deposits of the Tisdafine basin, Eastern Anti-Atlas. Morocco Bulletin De L’institut Scientifique 44(October):43–69

    Google Scholar 

  • Thomas RJ, Chevallier LP, Gresse PG, Harmer RE, Eglington BM, Armstrong RA, De Beer CH et al (2002) Precambrian evolution of the Sirwa window, Anti-Atlas Orogen Morocco. Precamb Res 118(1):1–57. https://doi.org/10.1016/S0301-9268(02)00075-X

    Article  Google Scholar 

  • Tuduri J, Chauvet A, Ennaciri A, Barbanson L (2006) Modèle de formation du gisement d’argent d’Imiter (Anti-Atlas oriental, Maroc). Nouveaux apports de l’analyse structurale et minéralogique. Comptes Rendus Geoscience 338(4): 253–61. https://doi.org/10.1016/j.crte.2005.11.010

  • Tuduri J, Chauvet A, Barbanson L, Bourdier JL, Labriki M, Ennaciri A, Badra L et al (2018) The Jbel Saghro Au (–Ag, Cu) and Ag–Hg Metallogenetic province: product of a long-lived ediacaran tectono-magmatic evolution in the Moroccan Anti-Atlas. Minerals 8(12):592. https://doi.org/10.3390/min8120592

    Article  Google Scholar 

  • Yamaguchi Y, Naito C (2003) Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int J Remote Sens 24(22):4311–23. https://doi.org/10.1080/01431160110070320

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015) Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci 74(January):97–109. https://doi.org/10.1016/j.cageo.2014.10.014

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2017) Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. J Afr Earth Sci GIS Based Min Potent Target 128(April):47–60. https://doi.org/10.1016/j.jafrearsci.2016.04.019

    Article  Google Scholar 

  • Yousefi M, Nykänen V (2016) Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J Geochem Explor Geoinform Appl Geochem 164(May):94–106. https://doi.org/10.1016/j.gexplo.2015.10.008

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical Mineralization Probability Index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115(April):24–35. https://doi.org/10.1016/j.gexplo.2012.02.002

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inst Elect Electron Eng InControl 8:338–353

    Google Scholar 

  • Zhang N, Zhou K (2015) Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. J Intell Fuzzy Syst 29(6):2639–51. https://doi.org/10.3233/IFS-151967

    Article  Google Scholar 

  • Zhang T, Yi G, Li H, Wang Z, Tang J, Zhong K, Li Y, Wang Q, Bie X (2016) Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in Duolong Porphyry Cu-Au deposit, Tibetan Plateau, China. Remote Sens. https://doi.org/10.3390/rs8110890

    Article  Google Scholar 

Download references

Funding

The authors declare that no funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LO, MEA, YH, and KD wrote the first draft of the manuscript text. LO, MBA, ZA, SC, AL, MABD, SA, and AI, prepared data and figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lahcen Ousaid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ousaid, L., Amrani, M.E., Hahou, Y. et al. Prediction of new polymetallic mineralization prospectivity zones using a combination of remote sensing, geology, and geochemistry data in the northeastern part of the Saghro inlier, Moroccan Anti-Atlas belt. Environ Earth Sci 82, 584 (2023). https://doi.org/10.1007/s12665-023-11285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11285-4

Keywords

Navigation