Skip to main content

Advertisement

Log in

Hydrochemical, isotopic, and reservoir characterization of the Pasinler (Erzurum) geothermal field, eastern Turkey

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl, and HCO3 ) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akkus I, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005) Turkiye Jeotermal Kaynakları Envanteri, Maden Tetkik Arama Genel Mudurlugu Envanter Serisi-201 Ankara (in Turkish)

  • APHA (American Public Health Association), AWWA (American Water Work Association) and WPCF (Water Pollution Control Federation) (1995) Standard methods for the determination of water and waste water, 15th edn. APHA, Washington, DC

    Google Scholar 

  • Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 536

    Google Scholar 

  • Arnorsson S (1983) Chemical-equilibria in icelandic geothermal systems-implications for chemical geothermometry investigations. Geothermics 12(2–3):119–128. https://doi.org/10.1016/0375-6505(83)90022-6

    Article  Google Scholar 

  • Aravena R, Mayer B (2009) Isotopes and processes in the nitrogen and sulfur cycles. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 203–246. https://doi.org/10.1201/9781420012613.ch7

    Chapter  Google Scholar 

  • Aydın H, Ekmekçi M, Tezcan L, Dişli E, Aksoy L, Yalçın MP, Özcan G (2009). Assessment of water resources potential of Gürpınar (Van) Karst Springs with regard to sustainable management. TUBITAK project (no. 106Y040), final report (in Turkish)

  • Aynalı Z, Bulut H (2002) Pasinler (Erzurum) Belediyesi Jeotermal Ön Etüt Raporu, Ankara (in Turkish) (unpublished)

  • Baba A, Sanliyuksel D (2011) Hydrogeochemical and isotopic composition of a low-temperature geothermal source in northwest Turkey: case study of Kirkgecit geothermal area. Environ Earth Sci 62:529–540

    Article  Google Scholar 

  • Berner ZA, Stuben D, Leosson MA, Klinge H (2002) S- and O-isotopic character of dissolved sulphate in the cover rock aquifers of a Zechstein salt dome. Appl Geochem 17(12):1515–1528. https://doi.org/10.1016/S0883-2927(02)00046-X

    Article  Google Scholar 

  • Bundschuh J, Maity JP, Nath B, Baba A, Gunduz O, Kulp TR, Jean JS, Kar S, Tseng Y, Bhattacharya P, Chen CY (2013) Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources. J Hazard Mater 262:951–959. https://doi.org/10.1016/j.jhazmat.2013.01.039

    Article  Google Scholar 

  • Bureau of Reclamation (Reclamation) (1995) Ground water manual, a water resources technical publication, for sale by the Superintendent of Documents. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Calmbach L (1997) AquaChem computer code-version 3.7.42. Waterloo Hydrogeologic, Waterloo, ON

    Google Scholar 

  • Canfield DE (2001) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta 65(7):1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press/Lewis, Boca Raton, p 328

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Constantopoulos J (1988) Fluid inclusion and rare earth element geochemistry of fluorite from south-central Idaho. Econ Geol 83(3):626–636. https://doi.org/10.2113/gsecongeo.83.3.626

    Article  Google Scholar 

  • Delalande M, Bergonzini L, Gherardi F, Guidi M, Andre L, Abdallah I, Williamson D (2011) Fluid geochemistry of natural manifestations from the southern Poroto-Rungwe hydrothermal system (Tanzania): preliminary conceptual model. J Volcanol Geotherm Res 199(1-2):127–141. https://doi.org/10.1016/j.jvolgeores.2010.11.002

    Article  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. Lewis publisher, USA

    Google Scholar 

  • Dilek R (1973). Mathematical modeling of the aquifers, application of Pasinler (Erzurum) and Çamlıbel (Tokat) Basin, İstanbul University. Associate Professor thesis (in Turkish-unpublished)

  • Evens NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorite. Geochim Cosmochim Acta 42(8):1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X

    Article  Google Scholar 

  • Fırat-Ersoy A, Sönmez SÇ (2014) Hydrogeochemical and isotopic characteristics of the Ilica geothermal system (Erzurum, Turkey). Environ Earth Sci 72(11):4451–4462. https://doi.org/10.1007/s12665-014-3345-z

    Article  Google Scholar 

  • Filiz Ş, (1982) Ege Bölgesindeki Önemli Jeotermal alanların 18O, 2H, 3H, 13C izotoplarıyla incelenmesi (in Turkish). Assoc. Prof. Thesis. E.Ü.Y.B.F., İzmir

  • Fontes JC (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, the terrestrial environment, 1A. Elsevier, Amsterdam, pp 75–140

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1-4):41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  Google Scholar 

  • Fournier RO (1979) Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hotspring systems. J Volcanol Geoth Res. 5(1–2):1–16. https://doi.org/10.1016/0377-0273(79)90029-5

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hail, USA, p 604

    Google Scholar 

  • Gammons CH, Wood SA, Pedrozo F, Varekamp JC, Nelson BJ, Shope CL, Baffico G (2005) Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222(3-4):249–267. https://doi.org/10.1016/j.chemgeo.2005.06.002

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75(15):3039–3048. https://doi.org/10.1029/JC075i015p03039

    Article  Google Scholar 

  • Gemici U, Filiz S (2001) Hydrochemistry of the Cesme geothermal area in western Turkey. J Volcanol Geotherm Res 110(1-2):171–187. https://doi.org/10.1016/S0377-0273(01)00202-5

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria-derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration,: in Applications of geochemistry in geothermal reservoir development, UNITAR-UNDP (ed. F. D'Amore), 119–144

  • Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic waters. J Volcanol Geotherm Res 97(1-4):347–396. https://doi.org/10.1016/S0377-0273(99)00177-8

    Article  Google Scholar 

  • Göb S, Loges A, Nolde N, Bau M, Jacob DE, Markl G (2013) Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water–rock interaction. Appl Geochem 33:127–152. https://doi.org/10.1016/j.apgeochem.2013.02.006

    Article  Google Scholar 

  • Gulec N (1988) The distribution of helium-3 in western Turkey. Miner Res Explor Bull 108:35–42

    Google Scholar 

  • Gultekin F, Hatipoglu E, Fırat Ersoy A (2011) Hydrogeochemistry, environmental isotopes and the origin of the Hamamayagı-Ladik thermal spring (Samsun, Turkey). Environ Earth Sci 62:1351–1360

    Article  Google Scholar 

  • Haskin LA, Wildeman TR, Haskin MA (1968) An accurate procedure for the determination of the rare earths by neutron activation. J Radioanal Chem 1(4):337–348. https://doi.org/10.1007/BF02513689

    Article  Google Scholar 

  • Hem JD (1970). Study and interpretation of the chemical characteristics of natural water. Water-supply paper - Geological Survey (U.S.), Second Edition, 1473, 363

  • Hounslow AW (1995). Water quality data: analysis and interpretation, Lewis Publishers, 54

  • IAH (International Association of Hydrogeologist) (1979) Map of mineral and thermal water of Europe. Scale 1:500,000. International Association of Hydrogeologist

  • Karakus H, Simsek S (2013) Tracing deep thermal water circulation systems in the E-W trending Büyük Menderes Graben, western Turkey. J Volcanol Geotherm Res 252:38–52. https://doi.org/10.1016/j.jvolgeores.2012.11.006

    Article  Google Scholar 

  • Keskin M, Pearce JA, Mitchell JG (1998) Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars plateau, North Eastern Turkey. J Volcanol Geotherm Res 85(1-4):355–404. https://doi.org/10.1016/S0377-0273(98)00063-8

    Article  Google Scholar 

  • Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naser ND, McCollin TH (eds) Thermal history of sedimentary basin. Springer-Verlag, New York, pp 99–117. https://doi.org/10.1007/978-1-4612-3492-0_6

    Chapter  Google Scholar 

  • Krouse HR (1980) Sulphurv isotopes in our environment. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry I, the terrestrial environment. A. Elsevier, Amsterdam, The Netherlands, pp 435–472

    Google Scholar 

  • Lewis AJ, Palmer MR, Sturchio NC, Kemp AJ (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 61(4):695–706. https://doi.org/10.1016/S0016-7037(96)00384-5

    Article  Google Scholar 

  • Lewis AJ, Komninou A, Yardley BWD, Palmer MR (1998) Rare earth element speciation in geothermal fluids from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 62(4):657–663. https://doi.org/10.1016/S0016-7037(97)00367-0

    Article  Google Scholar 

  • Lund JW, Freeston DH, Boyd TL (2010) Direct application of geothermal energy: 2010 worldwide review. Geothermics 40:159–180

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26(5):884–897. https://doi.org/10.1016/j.apgeochem.2011.02.008

    Article  Google Scholar 

  • Magri F, Akar T, Gemici U, Pekdeger A (2010) Deep geothermal groundwater flow in the Seferihisar-Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids 10(3):388–405. https://doi.org/10.1111/j.1468-8123.2009.00267.x

    Article  Google Scholar 

  • Magana BMI (1999) Geochemical interpretation of thermal fluid discharge from wells and springs in the Berlín geothermal field, El Salvador. Report 7:165–191

    Google Scholar 

  • McLennan SM (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in: Lipin, B.R. & McKay, G.A. (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Reviews in Mineralogy, 21, 169–200

  • Miao Z, Brusseau ML, Carroll KC, Carreon-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34(4):539–550. https://doi.org/10.1007/s10653-011-9423-1

    Article  Google Scholar 

  • Mutlu H (2007) Constraints on the origin of the Balıkesir thermal waters (Turkey) from stable isotope (δ18O, δD, δ13C, δ34S) and major-trace element compositions. Turk J Earth Sci 16:13–32

    Google Scholar 

  • Parkhurst D, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, onedimensional transport and inverse geochemical calculations. USGS Water Resources Investigation Report 99–4259

  • Pasvanoglu S, Gultekin F (2012) Hydrogeochemical study of the Terme and Karakurt thermal and mineralized waters from Kirsehir Area, Central Turkey. Environ Earth Sci 66(1):169–182. https://doi.org/10.1007/s12665-011-1217-3

    Article  Google Scholar 

  • Pasvanoglu S (2013) Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Agri) area, eastern Turkey. Appl Geochem 38:70–81. https://doi.org/10.1016/j.apgeochem.2013.08.010

    Article  Google Scholar 

  • Pelin S (1970). Pasinler-2 kuyu bitirme raporu. MTA Rap.No: 4532. Yayımlanmamış

  • Pelin S (1981) Explanation of main rock properties and genesis of oil in the Pasinler basin. Earth Sci J Karadeniz Tech Univ 1:127–142

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Shakeri A, Ghoreyshinia S, Mehrabi B, Delavari M (2015) Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran. J Volcanol Geotherm Res 304:49–61. https://doi.org/10.1016/j.jvolgeores.2015.07.023

    Article  Google Scholar 

  • Simsek S (1982) Geology, geochemistry, and geothermal model of the Kizildere geothermal field. First Turkish-Italian Seminar on Geothermal Energy, Turkey, pp 1–25

    Google Scholar 

  • Simsek S (1997) Geothermal potential in northwestern Turkey. Active tectonics of northwestern Anatolia. In: Schindler C, Pfister M (eds) The Marmara Poly-Project. vdf hochschulverlag AG an der ETH, Zurich, pp 111–123

    Google Scholar 

  • Sungurlu O (1971). 1/50 000 ölçekli I47 a Paftasının Jeolojisi, TPAO Arama Grubu Başkanlığı, Jeoloji Arşivi, Ankara (in Turkish) (unpublished)

  • Sanada T, Takamatsu N, Yoshiike Y (2006) Geochemical interpretation of long-term variations in rare earth elements concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan. Geothermics 35(2):141–155. https://doi.org/10.1016/j.geothermics.2006.02.004

    Article  Google Scholar 

  • Smedley PL (1991) The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochim Cosmochim Acta 55(10):2767–2779. https://doi.org/10.1016/0016-7037(91)90443-9

    Article  Google Scholar 

  • Şengör AMC (1980) Türkiye’nin Neotektoniğinin Esasları (fundamentals of the neotectonics of Turkey), Publication of Geological Society of Turkey, p 40

  • Tarcan G (2002) Geothermal water chemistry, centre of geothermal energy. Research and Application (Jenarum), Summer School Publications, 87–113 (in Turkish)

  • Tarcan G, Gemici U (2003) Water geochemistry of the Seferihisar geothermal area, Izmir, Turkey. J Volcanol Geotherm Res 126(3-4):225–242. https://doi.org/10.1016/S0377-0273(03)00149-5

    Article  Google Scholar 

  • Tarcan G (2005) Mineral saturation and scaling tendencies of waters discharged from wells (N150 8C) in geothermal areas of Turkey. J Volcanol Geotherm Res 142:263–283

    Article  Google Scholar 

  • Truesdell AH, Fournier RO (1977) Procedure for estimating the temperature of a hot water component in a mixed water by using a plot of dissolved silica versus enthalpy. USGS J Res 5:49–52

    Google Scholar 

  • Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geoth Res 79(1–2):9–23. https://doi.org/10.1016/S0377-0273(97)00024-3

    Article  Google Scholar 

  • Wood SA, Shannon WM (2003) Rare-earth elements in geothermal waters from Oregon, Nevada, and California. Solid State Chem 171(1-2):246–253. https://doi.org/10.1016/S0022-4596(02)00160-3

    Article  Google Scholar 

  • Yılmaz A, Terlemez I, Uysal Ş (1989) 1/100 000 ölçekli Türkiye Jeoloji Haritaları Serisi Erzurum F-33 Paftası. M.T.A, Ankara (in Turkish)

    Google Scholar 

  • Yılmazer S (2001) Kıyı Ege ve İzmir İli’ndeki Jeotermal kaynakların değerlendirilmesi. Yer altı Suları ve Çevre Sempozyumu, 21-23 Mart 2001. Bildiriler, İzmir, pp 371–379 (In Turkish)

    Google Scholar 

  • Yuce G, Taskiran L (2013) Isotope and chemical compositions of thermal fluids at Tekman geothermal area (eastern Turkey). Geochem J 47(4):423–435. https://doi.org/10.2343/geochemj.2.0262

    Article  Google Scholar 

  • Zuari K, Hkir N, Ouda B (2003) Palaeoclimatic variation in Maknassi basin (central Tunisia) during Holocene period using pluridisplinary approaches. Tech Doc IAEA Vienna 2:80–88

    Google Scholar 

Download references

Acknowledgements

We are grateful to Assistant Prof. Arzu Fırat Ersoy for assistances in the fieldwork. The authors also thank Assistant Prof. Adam Milewski from the University of Georgia (USA) for his help with the English of the final text.

Funding

This research was supported by the Karadeniz Technical University Research Project Fund (Project Number: 1063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Hatipoğlu Temizel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temizel, E.H., Gültekin, F. Hydrochemical, isotopic, and reservoir characterization of the Pasinler (Erzurum) geothermal field, eastern Turkey. Arab J Geosci 11, 3 (2018). https://doi.org/10.1007/s12517-017-3349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3349-6

Keywords

Navigation