Skip to main content

Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins

  • Conference paper
Thermal History of Sedimentary Basins

Abstract

Chemical geothermometers, based on the concentration of silica and proportions of sodium, potassium, lithium, calcium, and magnesium in water from hot springs and geothermal wells, have been used successfully to estimate the subsurface temperatures of the reservoir rocks. Modified versions of these geothermometers and a new chemical geothermometer, based on the concentrations of magnesium and lithium, are developed to estimate the subsurface temperatures (30°C to 200°C) in sedimentary basins where water salinities and hydraulic pressures are generally much higher than those in geothermal systems. The new Mg-Li geothermometer, which can be used to estimate subsurface temperatures as high as 350°C for waters from sedimentary basins and geothermal systems, is given by:

$$t = \frac{{2200}} {{\log \left( {\frac{{\sqrt {Mg} }}{{Li}}} \right) + 5.47}} - 273,$$

where t is temperature (°C) and Mg and Li concentrations are in mg/L.

Quartz, Mg-Li, Mg-corrected Na-K-Ca, and Na-Li geothermometers give concordant subsurface temperatures that are within 10°C of the measured values for reservoir temperatures higher than about 70°C. Mg-Li, Na-Li, and chalcedony geothermometers give the best results for reservoir temperatures from 30°C to 70°C. Subsurface temperatures calculated by chemical geothermometers are at least as reliable as those obtained by conventional methods. Chemical and conventional methods should be used together where reliable temperature data are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnórsson, S. 1975. Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. American Journal of Science 275:763–784.

    Article  Google Scholar 

  • Boulégue, J. 1978. Metastable sulfur species and trace metals (Mn, Fe, Cu, Zn, Cd, Pb) in hot brines from the French Dogger. American Journal of Science 278:1394–1411.

    Article  Google Scholar 

  • Brook, C.A., Mariner, R.H., Mabey, D.R., Swanson, J.R., Guffanti, M., and Muffler, L.J.P. 1979. Hydrothermal convection systems with reservoir temperatures ≥90°C. In: Muffler, L.J.P. (ed.): Assessment of Geothermal Resources of the United States— 1978. U.S. Geological Survey Circular 790, pp. 18–85.

    Google Scholar 

  • Capuano, R.M., and Cole, D.R. 1982. Fluid-mineral equilibria in a hydrothermal system, Roosevelt Hot Springs, Utah. Geochimica et Cosmochimica Acta 46:1353–1364.

    Article  Google Scholar 

  • Carpenter, A.B., Trout, M.L., and Pickett, E.E. 1974. Preliminary report on the origin and chemical evolution of lead- and zinc-rich brines in central Mississippi. Economic Geology 69:1191–1206.

    Article  Google Scholar 

  • Chen, C. A., and Marshall, W.L. 1982. Amorphous silica solubilities: IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C. Geochimica et Cosmochimica Acta 46:279–287.

    Article  Google Scholar 

  • Cusicanqui, H., Mahon, W.A.J., and Ellis, A.J. 1975. The geochemistry of the El Tatio geothermal field, Northern Chile. Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, vol. 1, pp. 703–711.

    Google Scholar 

  • D’Amore, F., and Panichi, C. 1980. Evaluation of deep temperature of hydrothermal systems by a new gas geothermometer. Geochimica et Cosmochimica Acta 44:549–556.

    Article  Google Scholar 

  • Drummond, S.E., Jr. 1982. Boiling and mixing of hydrothermal fluids: Chemical effects on mineral precipitation. Ph.D. thesis, Pennsylvania State University, University Park, PA, 380 pp.

    Google Scholar 

  • Ellis, A.J. 1970. Quantitative interpretation of chemical characteristics of geothermal systems. Geothermics 2:516–528.

    Article  Google Scholar 

  • Ellis, A.J., and Golding, R.M. 1963. The solubility of carbon dioxide above 100 °C in water and in sodium chloride solutions. American Journal of Science 261: 47–60.

    Article  Google Scholar 

  • Ellis, A.J., and Mahon, W.A.J. 1977. Chemistry and Geothermal Systems. New York, Academic Press, 392 pp.

    Google Scholar 

  • Fausto, J.J., Sanchez, A.A., Jimenez, M.E.S., Esquer, LP., and Ulloa, F.H. 1979. Hydrothermal geochemistry of the Cerro Preito geothermal field. Second Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, pp. 199–223.

    Google Scholar 

  • Fouillac, C., and Michard, G. 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70.

    Article  Google Scholar 

  • Fournier, R.O. 1973. Silica in thermal water: Laboratory and field investigations. In: Proceedings of the International Symposium on Hydrogeochemistry and Bio-geochemistry, Japan, 1970: Vol. 1. Washington, DC, The Clark Company, pp. 122–139.

    Google Scholar 

  • Fournier, R.O. 1979. A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions 3:221–224.

    Google Scholar 

  • Fournier, R.O. 1981. Application of water chemistry to geothermal exploration and reservoir engineering. In: Rybach, L., and Muffler, L.J.P. (eds.): Geothermal Systems: Principles and Case Histories. New York, Wiley, pp. 109–143.

    Google Scholar 

  • Fournier, R.O., and Potter, R.W., II. 1979. A magnesium correction for the Na-K-Ca geothermometer. Geochimica et Cosmochimica Acta 43:1543–1550.

    Article  Google Scholar 

  • Fournier, R.O., and Potter, R.W., II. 1982. An equation correlating the solubility of quartz in water from 25 ° to 900°C at pressures up to 10,000 bars. Geochemica et Cosmochimica Acta 46:1969–1973.

    Article  Google Scholar 

  • Fournier, R.O., and Rowe, J.J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science 264:685–697.

    Article  Google Scholar 

  • Fournier, R.O., Thompson, J.M., and Austin, C.F 1980. Interpretation of chemical analyses of waters collected from two geothermal wells at Coso, California. Journal of Geophysical Research 85:2405–2410.

    Article  Google Scholar 

  • Fournier, R.O., and Truesdell, A.H. 1973. An empirical Na-K-Ca chemical geothermometer for natural waters. Geochemica et Cosmochimica Acta 37:1255–1275.

    Article  Google Scholar 

  • Fournier, R.O., and Truesdell, A.H. 1974. Geochemical indicators of subsurface temperatures: Part 2. Estimation of temperature and fraction of hot water mixed with cold water. Journal of Research of the U.S. Geological Survey 2:263–270.

    Google Scholar 

  • Fournier, R.O., White, D.E., and Truesdell, A.H. 1974. Geochemical indicators of subsurface temperatures: Part 1. Basic assumptions. Journal of Research of the U.S. Geological Survey 2:259–262.

    Google Scholar 

  • Garrels, R.M., and Christ, C.L., 1965. Solutions, Minerals, and Equilibria. New York, Harper & Row, 450 pp.

    Google Scholar 

  • Giggenbach, WF. 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta 44:2021–2032.

    Article  Google Scholar 

  • Goldberg, E.D. 1963. Chemistry—the oceans as a chemical system. In: Hill, M.N. (ed.): The Sea: Vol. 2. Composition of Seawater, Comparative and Descriptive Oceanography. New York, Interscience, pp. 3–25.

    Google Scholar 

  • Helgeson, H.C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science 267:729–804.

    Article  Google Scholar 

  • Helgeson, H.C., Brown, T.H., Nigrini, A., and Jones, T.A. 1970. Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochimica et Cosmochimica Acta 34:569–592.

    Article  Google Scholar 

  • Henley, R.W, Truesdell, A.H., and Barton, P.B., Jr. 1984. Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology: Vol. 1. Chelsea, MI, Society of Economic Geologists, 267 pp.

    Google Scholar 

  • Hitchon, B. 1985. Geothermal gradients, hydrodynamics, and hydrocarbon occurrences, Alberta, Canada. American Association of Petroleum Geologists 68: 713–743.

    Google Scholar 

  • Hitchon, B., Billings, G.K., and Klovan, J.E. 1971. Geochemistry and origin of formation waters in the western Canada sedimentary basin: III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta 35:567–598.

    Article  Google Scholar 

  • Holmes, H.F., Baes, C.F., Jr., and Mesmer, R.E. 1978. Isopiestic studies of aqueous solutions at elevated temperatures: I. KCl, CaCl2, and MgCl2. Journal of Chemical Thermodynamics 10:983–996.

    Article  Google Scholar 

  • Holmes, H.F., Baes, C.F., Jr., and Mesmer, R.E., 1981. Isopiestic studies of aqueous solutions at elevated temperatures: III. (1-γ) NaCl + γCaCl2. Journal of Chemical Thermodynamics 13:101–113.

    Article  Google Scholar 

  • Howard, J.H., Apps, J.A., Benson, S.M., Goldsten, N.E., Graf, A.N., Haney, J.R, Jackson, D.D., Jupra-sert, S., Majer, E.L., McEdward, D.G., McEvilly, T.V., Narasimhan, T.N., Schechter, B., Schroeder, R.C., Taylor, P.C., van de Kamp, P.C., and Wolery, T.J. 1978. Geothermal resource and reservoir investigations of U.S. Bureau of Reclamation Leasehold at East Mesa, Imperial County, California. Berkeley, CA, Lawrence Berkeley Laboratory, University of California, Report LBL-7094, 305 pp.

    Book  Google Scholar 

  • Janik, C.J., Truesdell, A.H., Sammel, E.A., and White, A.F. 1985. Chemistry of low-temperature geothermal waters at Klamath Falls, Oregon. Geothermal Resources Council Transactions 9(1):325–331.

    Google Scholar 

  • Kharaka, Y.K., and Barnes, I. 1973. SOLMNEQ: Solution-mineral equilibrium computations. Springfield, VA, U.S. Department of Commerce, NTIS Report PB 215–899, 81 pp.

    Google Scholar 

  • Kharaka, Y.K., and Berry, F.A.F. 1974. The influence of geological membranes on the geochemistry of subsurface waters from Miocene sediments at Kettleman North Dome, California. Water Resources Research 10:313–327.

    Article  Google Scholar 

  • Kharaka, Y.K., and Berry, F.A.F. 1976. The influence of geological membranes on the geochemistry of subsurface waters from Eocene sediments at Kettleman North Dome, California: An example of effluent-type waters. In: Cadek, J., and Paces, T. (eds.): Proceedings of the International Symposium on Water-Rock Interaction, Prague, 1974. Prague, Czechoslovakia, The Geological Survey, pp. 268–277.

    Google Scholar 

  • Kharaka, Y.K., Brown, P.M., and Carothers, WW. 1978. Chemistry of waters in the geopressured zone from coastal Louisiana: Implications for the geothermal development. Geothermal Resources Council Transactions 2:371–374.

    Google Scholar 

  • Kharaka, Y.K., Callender, E., and Carothers, W.W 1977. Geochemistry of geopressured geothermal waters from the Texas Gulf Coast. Proceedings, Third Geopressured-Geothermal Energy Conference, University of Southwestern Louisiana, Lafayette, Louisiana: Vol. 1, pp. G1121–G1165.

    Google Scholar 

  • Kharaka, Y.K., Hull, R.W., and Carothers, W.W. 1985. Water-rock interactions in sedimentary basins. In: Relationship of Organic Matter and Mineral Diagenesis. Society of Economic Paleontologists and Mineralogists Short Course 17. Center for Energy Studies, University of Southwestern Louisiana, pp. 79–176.

    Google Scholar 

  • Kharaka, Y.K., Lico, M.S., and Carothers, W.W. 1980. Predicted corrosion and scale-formation properties of geopressured-geothermal waters from the northern Gulf of Mexico Basin. Journal of Petroleum Technology 32:319–324.

    Article  Google Scholar 

  • Kharaka, Y.K., Lico, M.S., and Law, L.M. 1982. Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins (abst.). American Association of Petroleum Geologists Bulletin 66:588.

    Google Scholar 

  • Kharaka, Y.K., Lico, M.S., Wright, V.A., and Carothers, W.W. 1979. Geochemistry of formation waters from Pleasant Bayou No. 2 well and adjacent areas in coastal Texas. In: Dorfman, N.H., and Fisher, W.L. (eds.): Proceedings, Fourth United States Gulf Coast Geopressured-Geothermal Energy Conference: Research and Development. Austin, TX, University of Texas at Austin, pp. 178–193.

    Google Scholar 

  • Kharaka, Y.K., Maest, A.S., Fries, T.L., Law, L.M., and Carothers, W.W. 1986. Geochemistry of lead and zinc in oil field brines: Central Mississippi Salt Dome basin revisited. Proceedings of Conference on the Genesis of Stratiform Sediment-Hosted Pb-Zn Deposits, Stanford University, California, pp. 50–54.

    Google Scholar 

  • Koga, A. 1970. Geochemistry of the waters discharged from drillholes in the Otake and Hatchobaru Areas. Geothermics (Special Issue 2), 2(2): 1422–1425.

    Google Scholar 

  • Kraemer, T.F., and Kharaka, Y.K. 1986. Uranium geochemistry in U.S. Gulf Coast geopressured-geothermal systems. Geochimica et Cosmochimica Acta 50:1440–1455.

    Article  Google Scholar 

  • Mahon, W.A.J., and Finlayson, J.B. 1972. The chemistry of the Broadlands geothermal area, New Zealand. American Journal of Science 232:48–68.

    Article  Google Scholar 

  • Manon, A.M., Mazor, E., Jimenez, M.E.S., Sanchez, A.A., Faustu, J.J., and Zenizo, C. 1977. Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. Berkeley, CA, Lawrence Berkeley Laboratory, University of California, Report LBL-7019, 113 pp.

    Book  Google Scholar 

  • Mariner, R.H., Brook, C.A., Reed, M.J., Bliss, J.D., Rapport, A.L., and Lieb, R.J. 1983. Low-temperature geothermal resources in the western United States. In: Reed, M.J. (ed.): Assessment of Low-Temperature Geothermal Resources of the United States—1982. U.S. Geological Survey Circular 892, pp. 31–50.

    Google Scholar 

  • Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M. 1975. The minor and trace elements, gas and isotope compositions of the principal hot springs of Nevada and Oregon. U.S. Geological Survey Open-File Report, 27 pp.

    Google Scholar 

  • Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T. S. 1974. Chemical composition and estimated minimum thermal reservoir temperatures of the principal hot springs of northern and central Nevada. U.S. Geological Survey Open-File Report, 32 pp.

    Google Scholar 

  • Marshall, W.L. 1980. Amorphous silica solubilities: III. Activity coefficient relations and predictions of solubility behavior in salt solutions, 0–350°C. Geochemica et Cosmochimica Acta 44:925–931.

    Article  Google Scholar 

  • McKenzie, W.F., and Truesdell, A.H. 1977. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drill holes. Geothermics 5:51–62.

    Article  Google Scholar 

  • Meyer, H.J., and McGee, H.W. 1985. Oil and gas fields accompanied by geothermal anomalies in Rocky Mountain region. American Association of Petroleum Geologists Bulletin 69:933–945.

    Google Scholar 

  • Mizutani, Y. 1972. Isotope composition and underground temperature of the Otake geothermal water, Kyushu, Japan. Geochemical Journal 6:67–73.

    Google Scholar 

  • Muffler, L.J.P, and White, D.E. 1969. Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, southeastern California. Geological Society of America Bulletin 80:157–182.

    Article  Google Scholar 

  • Murray, K.S., Jonas, M.L., and Lopez, C.A. 1985. Geochemical exploration of the Calistoga geothermal resource area, Napa Valley, California. Geothermal Resources Council Transactions 9(1):339–344.

    Google Scholar 

  • Nathenson, M., Nehring, N.L., Crosthwaitie, E.G., Harmon, R.S., Janik, C.J., and Borthwick, J. 1982. Chemical and light-stable isotope characteristics of waters from the Raft River Geothermal Area and environs, Cassia County, Idaho; Box Elder County, Utah. Geothermics 11 (4):215–237.

    Article  Google Scholar 

  • Nehring, N.L., and D’Amore, F. 1984. Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field. Geothermics 13:75–89.

    Article  Google Scholar 

  • Olmstead, F.H., Welch, A.H., Van Denburgh, A.S., and Ingebritsen, S.E. 1984. Geohydrology, aqueous geochemistry, and thermal regime of the Soda Lakes and Upsal Highback geothermal systems, Churchill County, Nevada. U.S. Geological Survey Water Resources Investigations Report 84–4054, 166 pp.

    Google Scholar 

  • Ovnatanov, S.T., and Tamrazyan, G.P. 1970. Thermal studies in subsurface structural investigations, Apseron Peninsula, Azerbaijan, USSR. American Association of Petroleum Geologists Bulletin 54:1677–1685.

    Google Scholar 

  • Pitzer, K.S. 1981. Characteristics of very concentrated aqueous solutions. In: Rickard, D.T., and Wickman, F.E. (eds.): Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Physics and Chemistry of the Earth: Vol. 13–14. New York, Pergamon Press, pp. 249–272.

    Google Scholar 

  • Sakai, H., and Matsubaya, O. 1974. Isotope geochemistry of the thermal waters of Japan and its bearing on the Kuroko ore solutions. Economic Geology 69: 974–991.

    Article  Google Scholar 

  • Staples, B.R., and Nuttall, R.L. 1977. The activity and osmotic coefficients of aqueous calcium chloride at 298.15°K. Journal of Physical Chemistry Reference Data 6:385–407.

    Article  Google Scholar 

  • Truesdell, A.H. 1976. Geochemical techniques in exploration, summary of section III. Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco: Vol. 1. Berkeley, CA, University of California, pp. 53–78.

    Google Scholar 

  • Truesdell, A.H., Thompson, J.M., Coplen, T.B., Nehring, N.L., and Janik, C.J. 1979. The origin of Cerro Prieto geothermal brine. Second Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, pp. 224–240.

    Google Scholar 

  • White, D.E. 1965. Saline waters of sedimentary rocks. In: Young, A., and Galley, G.E. (eds.): Fluids in Subsurface Environments. American Association of Petroleum Geologists Memoir 4, pp. 342–366.

    Google Scholar 

  • White, D.E. 1968. Environments of generation of some base-metal ore deposits. Economic Geology 63: 301–335.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kharaka, Y.K., Mariner, R.H. (1989). Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. In: Naeser, N.D., McCulloh, T.H. (eds) Thermal History of Sedimentary Basins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3492-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3492-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8124-5

  • Online ISBN: 978-1-4612-3492-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics