Skip to main content

Advertisement

Log in

Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In the coastal aquifer of Nador, aquifer vulnerability index (AVI) and Groundwater occurrence, Aquifer hydraulic conductivity, Level above sea, Distance from the shore, Impact magnitude of the existing seawater intrusion in the area, Thickness of the aquifer which is being mapped (GALDIT) methods were employed to determine the groundwater vulnerability to anthropogenic pollution and seawater intrusion. The groundwater quality is also studied by using water quality index (WQI), for identify sectors with the best quality for drinking purposes. The AVI method classified the area into three vulnerability classes: low, moderate, and high vulnerability in the two parts of Nador valley due to anthropogenic activities, while the GALDIT method delineates the area into three vulnerability classes: low (<5), moderate (5–7.5), and high (>7.5) covering 47, 36, and 17 %, respectively, of the study area surface. The high class is located in the coastal sector; it is due to the proximity to the sea, the high hydraulic conductivity of aquifer, the exchange freshwater-seawater after the overexploitation, and also the thickness of the aquifer. WQI has been calculated in the present study to assess suitability of groundwater for drinking purposes. Twenty-four groundwater samples were collected from the Nador plain during the dry period of 2013. The WQI show that 17 % of groundwater sample falls in good water category, 46 % falls in poor water category, 12 % falls in very poor water category, and 25 % falls in unsuitable water category. The groundwater unsuitable for drinking purposes is due to its high salinity, with high values of EC, Cl, Na+, Mg2+, and SO4 2− due to the seawater intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adak MDG, Purohit KM, Datta J (2001) Assessment of drinking water quality of river Brahmani. Indian J Environ Protect 8(3):285–291

    Google Scholar 

  • Adams B, Foster S (1992) Land surface zoning for groundwater protection. J Inst Water Environ Manage 6:312–320

    Article  Google Scholar 

  • Alam F, Umar R, Ahmed S, Dar FA (2014) A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga plain, India. Arab J Geosci 7:927–937

    Article  Google Scholar 

  • Aller L, Bennett T, Lehr JH, Petty RH, Hackett G (1987) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrogeologic settings, US EPA report 600/2–87/035. Robert S. Kerr Environmental Research Laboratory, Ada, 622p

    Google Scholar 

  • Asadi SS, Vuppala P, Anji Reddy M (2007) Remote sensing and GIS techniques for evaluation of groundwater quality in Municipal Corporation of Hyderabad (zone-V) India. Int J Environ Res Public Health 4(1):45–52

    Article  Google Scholar 

  • Avvannavar SM, Shrihari S (2008) Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environ Monit Assess 143:279–290

    Article  Google Scholar 

  • Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk river basin, Jordan, based on DRASTIC method. Arab J Geosci 3:273–282

    Article  Google Scholar 

  • Babiker IS, Mohamed MA, Hiyama T (2007) Assessing groundwater quality using GIS. Water Resour Manag 21:699–715

    Article  Google Scholar 

  • Backman B, Bodis D, Lahermo P, Rapant S, Tarvainen T (1998) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36:55–64

    Article  Google Scholar 

  • Bouderabala A (2015) Groundwater salinization in semi-arid zones: an example from Nador plain (Tipaza, Algeria). Environ Earth Sci 73(9):5479–5496

    Article  Google Scholar 

  • Bouderbala A, Remini B (2014) Geophysical approach for assessment of seawater intrusion in the coastal aquifer of Wadi Nador (Tipaza, Algeria). Acta Geophys 62(6):1352–1372

    Article  Google Scholar 

  • Bouderbala A, Remini B, Pulido-Bosch A (2014) Hydrogeological characterization of the Nador Plio-Quaternary aquifer, Tipaza (Algeria). Bol Geol Min 125(1):77–89

    Google Scholar 

  • Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model—case study in Goa. Jalvigyan Sameeksha 20:29–45

    Google Scholar 

  • Chachadi AG, Lobo-Ferreira JP (2001) Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Proc. Workshop Modeling in Hydrogeology Anna Univ, Chennai, pp 143–156

    Google Scholar 

  • Chachadi AG, Lobo-Ferreira JP, Noronha L, Choudri BS (2002) Assessing the impact of sea-level rise on salt water intrusion in coastal aquifers using GALDIT model. COASTIN newsletter 7:27–32

    Google Scholar 

  • Chachadi AG, Lobo Ferreira JP, Noronha L, Choudri BS (2003) Assessing the impact of sea-level rise on salt water intrusion in coastal Aquifers using GALDIT model. APRH/CEAS. In: Processing Seminario Sobre Aguas Subterrâneas, Lisboa, Fev. 2003, 13p

  • Civita M, De Maio M (1997) SINTACS, Un Sistema Parametrico per la Valutazione e la Cartografia della Vulnerabilita Degli Acquiferi All’inquinamento, Metodologia & Automatizzazione. Pitagora Ed Bologna, Itlaia, 191p

    Google Scholar 

  • Daly D, Drew D (1999) Irish methodologies for karst aquifer protection. In: Beek B (ed) Hydrogeology and engineering geology of sinkholes and karst. Balkema, Rotterdam, pp 267–327

    Google Scholar 

  • Dwivedi SL, Pathak V (2007) A preliminary assignment of water quality index to Mandakini river, Chitrakoot. Indian J Environ Protect 27:1036–1038

    Google Scholar 

  • Fandi M, Alyazjeen T (2013) Evaluation of site amplification, structural dynamic characteristics, and structural vulnerability rating of the city of Aqaba. Arab J Geosci 6:1465–1478

    Article  Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenbooden W, van Waegeningh HG (eds) TNO Committee on Hydrological Research, The Hague, Vulnerability of soil and groundwater to pollutants, Proc Inf, 38: 69–86

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559

    Article  Google Scholar 

  • Hötzl H (1996) Scientific basis for karst groundwater protection: guidelines and regulations. In: Antigüedad I (eds) Proceedings of the conference on groundwater resources on karst regions, Vitoria (Spain), 147–157

  • Jayasingha P, Pitawala A, Dharmagunawardhane HA (2011) Vulnerability of coastal aquifers due to nutrient pollution from agriculture: Kalpitiya, Sri Lanka. Water Air Soil Pollut 219:563–577

    Article  Google Scholar 

  • Jilali A, Zarhloule Y, Georgiadis M (2015) Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and AVI methods. Arab J Geosci 8:1611–1621

    Article  Google Scholar 

  • Kallioras A, Pliakas F, Diamantis I, Emmanouil M (2006) Application of geographical information systems (GIS) for the management of coastal aquifers to seawater intrusion. J Environ Sci Health 41(9):2027–2044

    Article  Google Scholar 

  • Kallioras A, Pliakas F, Skias S, Gkiougkis I (2011) Groundwater vulnerability assessment at SW Rhodope aquifer system in NE Greece. Environ Earth Sci 2:351–358

    Google Scholar 

  • Ketata M, Hamzaoui F, Gueddari M, Bouhlila R, Ribeiro L (2011) Hydrochemical and statistical study of groundwaters in Gabessouth deep aquifer (southeastern Tunisia). Phys Chem Earth 36:187–196

    Article  Google Scholar 

  • Ketata M, Gueddari M, Bouhlila R (2012) Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arab J Geosci 5:1379–1390

    Article  Google Scholar 

  • Kirsch R (2009) Groundwater geophysics a tool for hydrogeology, 2nd Ed. Springer. 548p

  • Lobo-Ferreira JP, Diamantino C, Leitão TE, Oliveira MM, Moinante MJ, Artuso E, Zakharova T (2003) Projecto FCT Valorização e Protecção da Zona Costeira Portuguesa: Avaliação e Estudo da Vulnerabilidade de Sistemas Aquíferos Costeiros (Componente 11). Relatório 265/03-NAS, LNEC, Lisboa, 189 p

    Google Scholar 

  • Lobo-Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 1—application to the Portuguese aquifer of Monte Gordo, The fourth inter-Celtic colloquium on hydrology and management of water resources, Guimaraes, Portugal, 12 p

  • Mishra PC, Patel RK (2001) Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa. Indian J Environ Ecoplann 5(2):293–298

    Google Scholar 

  • Naik S, Purohit KM (2001) Studies on water quality of river Brahmani in Sundargarh district, Orissa. Indian J Environ Ecoplann 5(2):397–402

    Google Scholar 

  • Nguyet MTV, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14:1666–1675

    Article  Google Scholar 

  • Pradhan SK, Patnaik D, Rout SP (2001) Water quality index for the ground water in and around a phosphatic fertilizer plant. Indian J Environ Protect 21:355–358

    Google Scholar 

  • Pulido-Bosch A (2014) Nociones de hidrologia para ambientologos, 2ed edition, University of Almeria, 492p

  • Recinos N, Kallioras A, Pliakas F, Schuth C (2015) Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ Earth Sci 73:1017–1032

    Article  Google Scholar 

  • Rizwan R, Gurdeep S (2010) Assessment of ground water quality status by using water quality index method in Orissa, India. World Appl Sci J 9(12):1392–1397

    Google Scholar 

  • Robins N, Adams B, Foster S, Palmer R (1994) Groundwater vulnerability mapping: the British perspective. Hydrogéologie 3:35–42

    Google Scholar 

  • Rodriguez R, Reyes R, Rosales J, Berlin J, Mejia JA, Ramos A (2001) Estructuracion de mapas tematicos de indices de vulnerabilidad acuifera de la mancha urbana de Salamanca, Guanajuato. Technical report, Municipio de Salamanca, CEAG, IGF-UNAM, 122p

  • Sadat-Noori SM, Ebrahimi K, Liaghat AM (2014) Groundwater quality assessment using the water quality index and GIS in Saveh-Nobaran aquifer, Iran. Environ Earth Sci 71(9):3827–3843

    Article  Google Scholar 

  • Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of groundwater quality index. Environ Monit Assess 163:327–335

    Article  Google Scholar 

  • Sahu P, Sikdar PK (2008) Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environ Geol 55:823–835

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-Jelma Aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588

    Article  Google Scholar 

  • Shekhar S, Pandey AC, Tirkey AS (2015) A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arab J Geosci 8:1385–1401

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram M, Prasanna MV, Vasanthavigar M, John Peter A, Anandhan P (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain-a case study from Mettur taluk, Salem district, Tamilnadu, India. J Earth Syst Sci 117(1):49–58

    Article  Google Scholar 

  • Van Stempvoort D, Ewert LE, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. J Water Res 18:25–37

    Article  Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Assess 171:595–609

    Article  Google Scholar 

  • WHO (2008) Guidelines for drinking-water quality. World Health Organization, Geneva, 564p

    Google Scholar 

  • Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environmental Earth Science 59:1461–1473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouderbala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouderbala, A., Remini, B., Saaed Hamoudi, A. et al. Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria). Arab J Geosci 9, 181 (2016). https://doi.org/10.1007/s12517-015-2151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2151-6

Keywords

Navigation