Skip to main content

Advertisement

Log in

Stress SPECT Myocardial Perfusion Imaging in End-Stage Renal Disease

  • Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients with end-stage renal disease (ESRD) have an increased risk of cardiovascular morbidity and mortality. Cardiac risk assessment, though challenging, is critical in these high-risk patients, particularly in the pre-transplant population. In this review, we discuss the burden of coronary artery disease in the ESRD population and review the literature on the diagnostic and prognostic performance, clinical value, and future directions of single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in ESRD patients.

Recent Findings

Stress myocardial perfusion imaging provides incremental prognostic value to clinical data. The American Heart Association/American College of Cardiology Foundation consensus statement on the cardiac assessment of kidney transplant candidates provides some guidance on the selection of asymptomatic patients for further non-invasive risk stratification. Additionally, the novel selective A2A receptor-agonist vasodilator stress agent, regadenoson, is safe and effective in ESRD and has recently been approved by the Food and Drug Administration for use in this population. Ancillary stress MPI findings, namely heart rate response to vasodilator stress, can provide incremental risk stratification.

Summary

While myocardial perfusion imaging is widely used as a risk assessment tool, its utilization and clinical implications in the ESRD population are controversial. Though stress SPECT-MPI has imperfect diagnostic accuracy in this specific patient population, it is still a valuable non-invasive modality in cardiovascular risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. USRDS. “Cardiovascular disease in patients with CKD.” 2016. https://www.usrds.org/2016/view/v1_04.aspx. Accessed 27 December 2016.

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    Article  CAS  PubMed  Google Scholar 

  3. Shroff GR, Frederick PD, Herzog CA. Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am Heart J. 2012;163(3):399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gurm HS, Gore JM, Anderson Jr FA, Wyman A, Fox KA, Steg PG, et al. Comparison of acute coronary syndrome in patients receiving versus not receiving chronic dialysis (from the Global Registry Of Acute Coronary Events [GRACE] Registry). Am J Cardiol. 2012;109(1):19–25.

    Article  PubMed  Google Scholar 

  5. Briasoulis A, Bakris GL. Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep. 2013;15(3):340.

    Article  PubMed  Google Scholar 

  6. Ojo AO, Hanson JA, Wolfe RA, Leichtman AB, Agodoa LY, Port FK. Long-term survival in renal transplant recipients with graft function. Kidney Int. 2000;57(1):307–13.

    Article  CAS  PubMed  Google Scholar 

  7. Miyamoto T, Carrero JJ, Stenvinkel P. Inflammation as a risk factor and target for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens. 2011;20(6):662–8.

    Article  CAS  PubMed  Google Scholar 

  8. Bleyer AJ, Hartman J, Brannon PC, Reeves-Daniel A, Satko SG, Russell G. Characteristics of sudden death in hemodialysis patients. Kidney Int. 2006;69(12):2268–73.

    Article  CAS  PubMed  Google Scholar 

  9. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005;293(14):1737–45.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  CAS  PubMed  Google Scholar 

  11. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol. 2007;50(3):217–24.

    Article  PubMed  Google Scholar 

  12. Arend SM, Mallat MJ, Westendorp RJ, van der Woude FJ, van Es LA. Patient survival after renal transplantation; more than 25 years follow-up. Nephrol Dial Transplant. 1997;12(8):1672–9.

    Article  CAS  PubMed  Google Scholar 

  13. •• Lentine KL, Costa SP, Weir MR, Robb JF, Fleisher LA, Kasiske BL, et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: a scientific statement from the American Heart Association and the American College of Cardiology Foundation: endorsed by the American Society of Transplant Surgeons, American Society of Transplantation, and National Kidney Foundation. Circulation. 2012;126(5):617–63. The first of its kind, this AHA/ACCF consensus statement on the cardiac assessment of transplant candidates provides guidance on non-invasive risk stratification in this challenging population.

    Article  PubMed  Google Scholar 

  14. Doukky R, Fughhi I, Wassouf M, Vuj A, Campagnoli T, Kharouta M, et al. A clinical pathway to assess asymptomatic renal transplant candidates using myocardial perfusion imaging. J Nucl Cardiol. 2016;23(4):916–7. [Abstract 220-14]

    Article  Google Scholar 

  15. Charytan D. Is left ventricular hypertrophy a modifiable risk factor in end-stage renal disease. Curr Opin Nephrol Hypertens. 2014;23(6):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Doukky R, Olusanya A, Vashistha R, Saini A, Fughhi I, Mansour K, et al. Diagnostic and prognostic significance of ischemic electrocardiographic changes with regadenoson-stress myocardial perfusion imaging. J Nucl Cardiol. 2015a;22(4):700–13.

    Article  PubMed  Google Scholar 

  17. Parikh K, Appis A, Doukky R. Cardiac imaging for the assessment of patients being evaluated for kidney or liver transplantation. J Nucl Cardiol. 2015;22(2):282–96.

    Article  PubMed  Google Scholar 

  18. Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol: Off Publ Am Soc Nuclear Cardiol. 2007;14(5):645–58.

    Article  Google Scholar 

  19. Golzar Y, Doukky R. Regadenoson use in patients with chronic obstructive pulmonary disease: the state of current knowledge. Int J Chron Obstruct Pulmon Dis. 2014;9:129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordi T, Blackburn B, Lieu H. Regadenoson pharmacokinetics and tolerability in subjects with impaired renal function. J Clin Pharmacol. 2007;47(7):825–33.

    Article  CAS  PubMed  Google Scholar 

  21. Gharibian KN, Murthy VL, Mueller BA. Influence of hemodialysis on regadenoson clearance in an in vitro hemodialysis model. J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0667-0.

    PubMed  Google Scholar 

  22. Aljaroudi W, Hermann D, Hage F, Heo J, Iskandrian AE. Safety of regadenoson in patients with end-stage renal disease. Am J Cardiol. 2010a;105(1):133–5.

    Article  CAS  PubMed  Google Scholar 

  23. •• Doukky R, Rangel MO, Wassouf M, Dick R, Alqaid A, Morales Demori R. The safety and tolerability of regadenoson in patients with end-stage renal disease: the first prospective evaluation. J Nucl Cardiol. 2013a;20(2):205–13. This was the first prospective study to confirm the safety and tolerability of regadenoson in patients with ESRD.

    Article  PubMed  Google Scholar 

  24. Doukky R, Morales Demori R, Jain S, Kiriakos R, Mwansa V, Calvin JE. Attenuation of the side effect profile of regadenoson: a randomized double-blinded placebo-controlled study with aminophylline in patients undergoing myocardial perfusion imaging. “the ASSUAGE trial”. J Nucl Cardiol. 2012;19(3):448–57.

    Article  PubMed  Google Scholar 

  25. Doukky R, Rangel MO, Dick R, Wassouf M, Alqaid A, Margeta B. Attenuation of the side effect profile of regadenoson: a randomized double-blind placebo-controlled study with aminophylline in patients undergoing myocardial perfusion imaging and have severe chronic kidney disease—the ASSUAGE-CKD trial. Int J Cardiovasc Imaging. 2013b;29(5):1029–37.

    Article  PubMed  Google Scholar 

  26. Rangel MO, Morales Demori R, Voll ST, Wassouf M, Dick R, Doukky R. Severe chronic kidney disease as a predictor of benefit from aminophylline administration in patients undergoing regadenoson stress myocardial perfusion imaging: a substudy of the ASSUAGE and ASSUAGE-CKD trials. J Nucl Cardiol. 2015;22(5):1008–18.

    Article  PubMed  Google Scholar 

  27. Fughhi I, Campagnoli T, Ali A, Doukky R. Impact of a regimented aminophylline administration protocol on the burden of regadenoson-induced ischemia detected by SPECT myocardial perfusion imaging. J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0506-3.

    Google Scholar 

  28. Ananthasubramaniam K, Weiss R, McNutt B, Klauke B, Feaheny K, Bukofzer S. A randomized, double-blind, placebo-controlled study of the safety and tolerance of regadenoson in subjects with stage 3 or 4 chronic kidney disease. J Nucl Cardiol. 19(2):319–29.

  29. Boudreau RJ, Strony JT, duCret RP, Kuni CC, Wang Y, Wilson RF, et al. Perfusion thallium imaging of type I diabetes patients with end stage renal disease: comparison of oral and intravenous dipyridamole administration. Radiology. 1990;175(1):103–5.

    Article  CAS  PubMed  Google Scholar 

  30. De Lima JJ, Sabbaga E, Vieira ML, de Paula FJ, Ianhez LE, Krieger EM, et al. Coronary angiography is the best predictor of events in renal transplant candidates compared with noninvasive testing. Hypertension. 2003;42(3):263–8.

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Canton C, Culegras C, Hernandez-Briz MJ, Palomar R, Moreno A, et al. Dobutamine stress echocardiography and stress 99M-technetium methoxyisobutylisonitrile SPECT in the assessment of coronary artery disease in kidney transplant candidates [abstract]. Journal of the American Society of Nephrology : JASN. 1998;9:708A.

    Google Scholar 

  32. Gowdak LH DPF, De Oliveira AL, Arantes RL, Cesar LA, Ramires JA, et al. Non-invasive screening for coronary artery disease in renal transplant candidates with diabetes is influenced by gender. European Society of Cardiology. 2010; European Society of Cardiology Congress.

  33. Marwick TH, Steinmuller DR, Underwood DA, Hobbs RE, Go RT, Swift C, et al. Ineffectiveness of dipyridamole SPECT thallium imaging as a screening technique for coronary artery disease in patients with end-stage renal failure. Transplantation. 1990;49(1):100–3.

    Article  CAS  PubMed  Google Scholar 

  34. Vandenberg BF, Rossen JD, Grover-McKay M, Shammas NW, Burns TL, Rezai K. Evaluation of diabetic patients for renal and pancreas transplantation: noninvasive screening for coronary artery disease using radionuclide methods. Transplantation. 1996;62(9):1230–5.

    Article  CAS  PubMed  Google Scholar 

  35. Worthley MI, Unger SA, Mathew TH, Russ GR, Horowitz JD. Usefulness of tachycardic-stress perfusion imaging to predict coronary artery disease in high-risk patients with chronic renal failure. Am J Cardiol. 2003;92(11):1318–20.

    Article  PubMed  Google Scholar 

  36. Wang LW, Fahim MA, Hayen A, Mitchell RL, Baines L, Lord S, et al. Cardiac testing for coronary artery disease in potential kidney transplant recipients. The Cochrane database of systematic reviews. 2011(12):Cd008691.

  37. Winther S, Svensson M, Jorgensen HS, Bouchelouche K, Gormsen LC, Pedersen BB, et al. Diagnostic performance of coronary CT angiography and myocardial perfusion imaging in kidney transplantation candidates. JACC Cardiovasc Imaging. 2015;8(5):553–62.

    Article  PubMed  Google Scholar 

  38. Hakeem A, Bhatti S, Chang SM. Screening and risk stratification of coronary artery disease in end-stage renal disease. JACC Cardiovasc Imaging. 2014;7(7):715–28.

    Article  PubMed  Google Scholar 

  39. Golzar Y, Olusanya A, Pe N, Dua SG, Golzar J, Gidea C, et al. The significance of automatically measured transient ischemic dilation in identifying severe and extensive coronary artery disease in regadenoson, single-isotope technetium-99m myocardial perfusion SPECT. J Nucl Cardiol. 2015;22(3):526–34.

    Article  PubMed  Google Scholar 

  40. Doukky R, Frogge N, Bayissa YA, Balakrishnan G, Skelton JM, Confer K, et al. The prognostic value of transient ischemic dilatation with otherwise normal SPECT myocardial perfusion imaging: a cautionary note in patients with diabetes and coronary artery disease. J Nucl Cardiol. 2013c;20(5):774–84.

    Article  PubMed  Google Scholar 

  41. Ragosta M, Samady H, Isaacs RB, Gimple LW, Sarembock IJ, Powers ER. Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries. Am Heart J. 2004;147(6):1017–23.

    Article  PubMed  Google Scholar 

  42. Mc Ardle BA, Dowsley TF, de Kemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37.

    Article  PubMed  Google Scholar 

  43. •• Hakeem A, Bhatti S, Dillie KS, Cook JR, Samad Z, Roth-Cline MD, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation. 2008;118(24):2540–9. This observational study showed that stress SPECT-MPI provides effective risk stratification across the spectrum of renal function; notably, CKD patients with a normal MPI had a worse prognosis when compared to patients with normal renal function and normal MPI.

    Article  PubMed  Google Scholar 

  44. Bhatti S, Hakeem A, Dhanalakota S, Palani G, Husain Z, Jacobsen G, et al. Prognostic value of regadenoson myocardial single-photon emission computed tomography in patients with different degrees of renal dysfunction. Eur Heart J Cardiovasc Imaging. 2014;15(8):933–40.

    Article  PubMed  Google Scholar 

  45. Hage FG, Ghimire G, Lester D, McKay J, Bleich S, El-Hajj S, et al. The prognostic value of regadenoson myocardial perfusion imaging. J Nucl Cardiol. 2015;22(6):1214–21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Doukky R, Fughhi I, Campagnoli T, Wassouf M, Ali A. The prognostic value of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2015b; doi:10.1007/s12350-015-0303-4.

    Google Scholar 

  47. Kim JK, Kim SG, Kim HJ, Song YR. Cardiac risk assessment by gated single-photon emission computed tomography in asymptomatic end-stage renal disease patients at the start of dialysis. J Nucl Cardiol. 2012;19(3):438–47.

    Article  PubMed  Google Scholar 

  48. Momose M, Babazono T, Kondo C, Kobayashi H, Nakajima T, Kusakabe K. Prognostic significance of stress myocardial ECG-gated perfusion imaging in asymptomatic patients with diabetic chronic kidney disease on initiation of haemodialysis. Eur J Nucl Med Mol Imaging. 2009;36(8):1315–21.

    Article  PubMed  Google Scholar 

  49. Hase H, Joki N, Ishikawa H, Fukuda H, Imamura Y, Saijyo T, et al. Prognostic value of stress myocardial perfusion imaging using adenosine triphosphate at the beginning of haemodialysis treatment in patients with end-stage renal disease. Nephrol Dial Transplant. 2004;19(5):1161–7.

    Article  PubMed  Google Scholar 

  50. Venkataraman R, Hage FG, Dorfman T, Heo J, Aqel RA, de Mattos AM, et al. Role of myocardial perfusion imaging in patients with end-stage renal disease undergoing coronary angiography. Am J Cardiol. 2008;102(11):1451–6.

    Article  PubMed  Google Scholar 

  51. Doukky R, Frogge N, Balakrishnan G, Hayes K, Collado FM, Rangel MO, et al. The prognostic value of cardiac SPECT performed at the primary care physician’s office. J Nucl Cardiol. 2013d;20(4):519–28.

    Article  PubMed  Google Scholar 

  52. Doukky R, Hayes K, Frogge N, Balakrishnan G, Dontaraju VS, Rangel MO, et al. Impact of appropriate use on the prognostic value of single-photon emission computed tomography myocardial perfusion imaging. Circulation. 2013e;128:1634–43.

    Article  PubMed  Google Scholar 

  53. Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41(8):1329–40.

    Article  PubMed  Google Scholar 

  54. Poulin MF, Alexander S, Doukky R. Prognostic implications of stress modality on mortality risk and cause of death in patients undergoing office-based SPECT myocardial perfusion imaging. J Nucl Cardiol. 2016;23(2):202–11.

    Article  PubMed  Google Scholar 

  55. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2011a;18(6):1086–94.

    Article  PubMed  Google Scholar 

  56. Hage FG, Dean P, Bhatia V, Iqbal F, Heo J, Iskandrian AE. The prognostic value of the heart rate response to adenosine in relation to diabetes mellitus and chronic kidney disease. Am Heart J. 2011b;162(2):356–62.

    Article  CAS  PubMed  Google Scholar 

  57. •• AlJaroudi W, Campagnoli T, Fughhi I, Wassouf M, Ali A, Doukky R. Prognostic value of heart rate response during regadenoson stress myocardial perfusion imaging in patients with end stage renal disease. J Nucl Cardiol. 2016;23(3):560–9. This prospective study showed that a blunted heart rate response (<28%) to regadenoson is a strong and independent predictor of death and cardiovascular events in patients with ESRD.

    Article  PubMed  Google Scholar 

  58. Gomez J, Fughhi I, Campagnoli T, Ali A, Doukky R. Impact of integrating heart rate response with perfusion imaging on the prognostic value of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0497-0.

    PubMed  Google Scholar 

  59. Aggarwal H, AlJaroudi WA, Mehta S, Mannon R, Heo J, Iskandrian AE, et al. The prognostic value of left ventricular mechanical dyssynchrony using gated myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2014;21(4):739–46.

    Article  PubMed  Google Scholar 

  60. AlJaroudi W, Aggarwal H, Venkataraman R, Heo J, Iskandrian AE, Hage FG. Impact of left ventricular dyssynchrony by phase analysis on cardiovascular outcomes in patients with end-stage renal disease. J Nucl Cardiol. 2010b;17(6):1058–64.

    Article  PubMed  Google Scholar 

  61. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38.

    Article  CAS  PubMed  Google Scholar 

  62. El-Hajj S, AlJaroudi WA, Farag A, Bleich S, Manaoragada P, Iskandrian AE, et al. Effect of changes in perfusion defect size during serial regadenoson myocardial perfusion imaging on cardiovascular outcomes in high-risk patients. J Nucl Cardiol. 2016;23(1):101–12.

    Article  PubMed  Google Scholar 

  63. Anokwute C, Fughhi I, Wassouf M, Kharouta M, Campagnoli T, Vuj A, et al. The prognostic value of serial stress myocardial perfusion imaging in asymptomatic end-stage renal disease patients awaiting kidney transplantation [Abstract]. J Am Coll Cardiol. 2017; in press.

  64. Gill JS, Ma I, Landsberg D, Johnson N, Levin A. Cardiovascular events and investigation in patients who are awaiting cadaveric kidney transplantation. J Am Soc Nephrol. 2005;16(3):808–16.

    Article  PubMed  Google Scholar 

  65. Gowdak LH, de Paula FJ, Cesar LA, Martinez Filho EE, Ianhez LE, Krieger EM, et al. Screening for significant coronary artery disease in high-risk renal transplant candidates. Coron Artery Dis. 2007;18(7):553–8.

    Article  PubMed  Google Scholar 

  66. Mann DM, Fernandez S, Mondal Z, Laskow D, Osband A, Debroy M, et al. Role of coronary angiography in the assessment of cardiovascular risk in kidney transplant candidates. Am J Cardiol. 2016;118(5):679–83.

    Article  PubMed  Google Scholar 

  67. •• Hage FG, Smalheiser S, Zoghbi GJ, Perry GJ, Deierhoi M, Warnock D, et al. Predictors of survival in patients with end-stage renal disease evaluated for kidney transplantation. Am J Cardiol. 2007;100(6):1020–5. This study showed that, in kidney transplant candidates, the presence and severity of CAD on coronary angiography was not predictive of survival; also, coronary revascularization did not alter survival except in patients with 3-vessel disease.

    Article  PubMed  Google Scholar 

  68. De Lima JJ, Gowdak LH, de Paula FJ, Muela HC, David-Neto E, Bortolotto LA. Coronary artery disease assessment and intervention in renal transplant patients: analysis from the KiHeart cohort. Transplantation. 2016;100(7):1580–7.

    Article  PubMed  Google Scholar 

  69. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Thorac Cardiovasc Surg. 2012;143(1):4–34.

    Article  PubMed  Google Scholar 

  70. Patel RK, Mark PB, Johnston N, McGeoch R, Lindsay M, Kingsmore DB, et al. Prognostic value of cardiovascular screening in potential renal transplant recipients: a single-center prospective observational study. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(8):1673–83.

    Article  CAS  Google Scholar 

  71. Kumar N, Baker CS, Chan K, Duncan N, Malik I, Frankel A, et al. Cardiac survival after pre-emptive coronary angiography in transplant patients and those awaiting transplantation. Clinical Journal of the American Society of Nephrology : CJASN. 2011;6(8):1912–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. McFalls EOWH, Moritz T, Goldman S, Krupski W, Littooy F, Pierpont G, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351(27):2795–804.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Doukky.

Ethics declarations

Conflict of Interest

Rami Doukky served on an advisory board and receives research funding from Astellas Pharma Global Development (Northbrook, IL). Yasmeen Golzar has no conflict to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golzar, Y., Doukky, R. Stress SPECT Myocardial Perfusion Imaging in End-Stage Renal Disease. Curr Cardiovasc Imaging Rep 10, 13 (2017). https://doi.org/10.1007/s12410-017-9409-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9409-1

Keywords

Navigation