Skip to main content

Advertisement

Log in

Positron Emission Tomography Myocardial Perfusion Imaging for Diagnosis and Risk Stratification in Obese Patients

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Obesity is reaching pandemic proportions, and its prevalence is projected to increase over the next decade. Because of the strong association of obesity and cardiovascular disease, the demand for diagnostic and prognostic tests is also expected to increase. Although there are multiple imaging modalities available for the physician, appropriate selection of the imaging modality in obese patients will facilitate accurate diagnosis, patient management, and minimize unnecessary resource utilization and costs. To help select the most appropriate imaging modality in obese patients, it is vital that the physician understands the limitations of each imaging modality. Positron emission tomography (PET) cameras and radiotracers have unique characteristics that offer advantages over other modalities. Qualitative assessment of relative myocardial perfusion and quantification of myocardial blood flow by PET is feasible. Therefore, PET may be an ideal imaging modality in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organization WH. Physical Status: The Use and Interpretation of Anthropometry. Technical Report Series, No 854. Geneva: Switzerland; 1995.

  2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 [Epub ahead of print]. This is the most recent systematic analysis of the global prevalence of obesity.

  3. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.

    Article  CAS  Google Scholar 

  4. National Institutes of Health NH, Lung, and Blood Institute and North American Association for the Study of Obesity. Practical Guide on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Bethesda: MD; 2000.

  5. Pencina M, D’Agostino R, Fox C, Vasan R, Kannel W. Obesity is independently associated with long-term risk of cardiovascular mortality and underweight with risk of non-cardiovascular mortality in Framingham Offspring Cohort. Circulation. 2009;120. [Abstract 1466].

  6. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.

    Article  PubMed  Google Scholar 

  7. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. American Heart Association, Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  8. Murphy NF, MacIntyre K, Stewart S, Hart CL, Hole D, McMurray JJV. Long-term cardiovascular consequences of obesity: 20-year follow-up of more than 15,000 middle-aged men and women (the Renfrew–Paisley study). Eur Heart J. 2006;27:96–106.

    Article  CAS  PubMed  Google Scholar 

  9. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289:187–93.

    Article  PubMed  Google Scholar 

  10. Badimon L, Hernandez Vera R, Vilahur G. Atherothrombotic risk in obesity. Hamostaseologie. 2013;33:259–68. This is a comprehensive review of the atherothrombotic risk in obesity.

    Article  CAS  PubMed  Google Scholar 

  11. Motivala AA, Rose PA, Kim HM, Smith YR, Bartnik C, Brook RD, et al. Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol. 2008;15:510–7.

    Article  PubMed  Google Scholar 

  12. Sundell J, Raitakari OT, Viikari J, Kantola I, Nuutila P, Knuuti J. Both BMI and waist circumference are associated with coronary vasoreactivity in overweight and obese men. Obes Facts. 2012;5:693–9.

    Article  PubMed  Google Scholar 

  13. Al Suwaidi J, Higano ST, Holmes Jr DR, Lennon R, Lerman A. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol. 2001;37:1523–8.

    Article  CAS  PubMed  Google Scholar 

  14. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54.

    Article  CAS  PubMed  Google Scholar 

  15. Machac J. Cardiac positron emission tomography imaging. Sem Nucl Med. 2005;35:17–36.

    Article  Google Scholar 

  16. Machac J, Bacharach S, Bateman T, Bax J, Beanlands R, Bengel F, et al. Quality Assurance Committee of the American Society of Nuclear Cardiology. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol. 2006;13:e121–51.

    Article  PubMed  Google Scholar 

  17. Dilsizian V, Bacharach S, Beanlands R, Bergmann S, Delbeke D, Gropler RJ, et al. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16:651.

    Article  Google Scholar 

  18. Groves A, Speechly-Dick M-E, Dickson J, Kayani I, Endozo R, et al. Cardiac 82rubidium PET/CT: initial European experience. Eur J Nucl Med Mol Imaging. 2007;34:1965–72.

    Article  PubMed  Google Scholar 

  19. Dhar R, Ananthasubramaniam K. Rubidium-82 Cardiac positron emission tomography imaging: an overview for the general cardiologist. Cardiol Rev. 2011;19:255–63.

    Article  PubMed  Google Scholar 

  20. Yu JN, Fahey FH, Harkness BA, Gage HD, Eades CG, Keyes JW. Evaluation of emission-transmission registration in thoracic PET. J Nucl Med. 1994;35:1777–80.

    CAS  PubMed  Google Scholar 

  21. McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med. 1992;33:1209–14.

    CAS  PubMed  Google Scholar 

  22. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation–emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45:1029–39.

    PubMed  Google Scholar 

  23. Hu S, Liu S, Katus H, Leudde M. The value of contrast dobutamine stress echocardiography in detecting coronary artery disease in overweight and obese patients. Can J Cardiol. 2007;23:885–9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bhat G, Daley K, Dugan M, Larson G. Preoperative evaluation for bariatric surgery using transesophageal dobutamine stress echocardiography. Obes Surg. 2004;14:948–51.

    Article  PubMed  Google Scholar 

  25. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. American Heart Association Council on Cardiovascular Imaging and Intervention, American Heart Association Committee on Cardiac Imaging. Assessment of Coronary Artery Disease by Cardiac Computed Tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging. Counc Clin Cardiol Circ. 2006;114:1761–91.

    Google Scholar 

  26. Labounty T, Gomez M, Achenbach S, Al-Mallah M, Berman D, Budoff M, et al. Body mass index and the prevalence, severity and risk of coronary artery disease: an international multicenter study of 13,874 patients. Eur Heart J Cardiovasc Imaging. 2013;14:456–63.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Shah RV, Heydari B, Coelho-Filho O, Abbasi SA, Feng JH, Neilan TG, et al. Vasodilator stress perfusion CMR imaging is feasible and prognostic in obese patients. JACC Cardiovasc Imaging. 2014;7:462–72. doi:10.1016/j.jcmg.2013.11.011. This was a recent study to examine the prognostic value of stress CMR in obese patients.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Miller J. Imaging obese patients. Radiol Rounds. 2011;4.

  29. Ghanem MA, Kazim NA, Elgazzar AH. Impact of obesity on nuclear medicine imaging. J Nucl Med Technol. 2011;39:40–50.

    Article  PubMed  Google Scholar 

  30. Elhendy A, Schinkel AFL, van Domburg RT, Bax JJ, Valkema R, Biagini E, et al. Prognostic stratification of obese patients by stress 99mTc-Tetrofosmin myocardial perfusion imaging. J Nucl Med. 2006;47:1302–6.

    PubMed  Google Scholar 

  31. Duvall WL, Croft LB, Corriel JS, Einstein AJ, Fisher JE, Haynes PS, et al. SPECT myocardial perfusion imaging in morbidly obese patients: image quality, hemodynamic response to pharmacologic stress, and diagnostic and prognostic value. J Nucl Cardiol. 2006;13:202–9.

    Article  PubMed  Google Scholar 

  32. Gimelli A, Bottai M, Giorgetti A, Genovesi D, Filidei E, Marzullo P. Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging. 2012;39:1254–61.

    Article  CAS  PubMed  Google Scholar 

  33. Buschur ME, Smith D, Share D, Campbell W, Mattichak S, Sharma M, et al. The burgeoning epidemic of morbid obesity in patients undergoing percutaneous coronary intervention: insight from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. J Am Coll Cardiol. 2013;62:685–91. This study examined the morbidity and mortality rates after PCI in 227,044 obese patients.

    Article  PubMed  Google Scholar 

  34. McArdle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:1828–37.

    Article  Google Scholar 

  35. Alhassen F, Nguyen N, Bains S, Gould RG, Seo Y, Bacharach SL, et al. Myocardial blood flow measurement with a conventional dual-head SPECT/CT with spatiotemporal iterative reconstructions—a clinical feasibility study. Am J Nucl Med Mol Imaging. 2013;4:53–9.

    PubMed Central  PubMed  Google Scholar 

  36. Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging from basic aspects to clinical applications. J Cardiol. 2010;55:163–73.

    Article  PubMed  Google Scholar 

  37. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.

    PubMed  Google Scholar 

  38. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  39. Di Carli M, Hachamovitch R. Should PET replace SPECT for evaluating CAD? The end of the beginning. J Nucl Cardiol. 2006;13:2–7.

    Article  PubMed  Google Scholar 

  40. Aarnoudse WH, Botman KJ, Pijls NH. False-negative myocardial scintigraphy in balanced three-vessel disease, revealed by coronary pressure measurement. Int J Cardiovasc Intervent. 2003;5:67–71.

    PubMed  Google Scholar 

  41. Kumar SP, Movahed A. Importance of wall motion analysis in the diagnosis of left main disease using stress nuclear myocardial perfusion imaging. Int J Cardiovasc Imaging. 2003;19:219–24.

    Article  PubMed  Google Scholar 

  42. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48:349–58.

    PubMed  Google Scholar 

  43. Di Carli M, Czernin J, Hoh C, Gerbaudo V, Brunken R, Huang S, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91:1944–51.

    Article  PubMed  Google Scholar 

  44. Uren N, Melin J, de Bruyne B, Wijns W, Baudhuin T, Camici P. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782–8.

    Article  CAS  PubMed  Google Scholar 

  45. Beanlands R, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in stenosed and angiographically normal vessels of patients with coronary atherosclerosis. J Am Coll Cardiol. 1995;26:1465–75.

    Article  CAS  PubMed  Google Scholar 

  46. Hendel R, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Nuclear Cardiology, American College of Radiology, American Heart Association, American Society of Echocardiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, Society of Nuclear Medicine. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009. Appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Endorsed by the American College of Emergency Physicians. J Am Coll Cardiol. 2009;53:2201–29.

    Article  PubMed  Google Scholar 

  47. Sampson U, Dorbala S, Limaye A, Kwong R, Di Carli M. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol. 2007;49:1052–8.

    Article  CAS  PubMed  Google Scholar 

  48. Freedman N, Schechter D, Klein M, Marciano R, Rozenman Y, Chisin R. SPECT attenuation artifacts in normal and overweight persons: insights from a retrospective comparison of Rb-82 positron emission tomography and TI-201 SPECT myocardial perfusion imaging. Clin Nucl Med. 2000;25:1019–23.

    Article  CAS  PubMed  Google Scholar 

  49. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  50. Hachamovitch R, Berman DS. The use of nuclear cardiology in clinical decision making. Semin Nucl Med. 2005;35:62–72.

    Article  PubMed  Google Scholar 

  51. Hachamovitch R, Shaw L, Berman DS. Methodological considerations in the assessment of noninvasive testing using outcomes research: pitfalls and limitations. Prog Cardiovasc Dis. 2000;43:215–30.

    Article  CAS  PubMed  Google Scholar 

  52. Beller G, Zaret B. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation. 2000;101:1465–78.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshinaga K, Chow BJ, Williams K, Chen L, dekemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48:1029–39.

    Article  PubMed  Google Scholar 

  54. Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26:639–47.

    Article  CAS  PubMed  Google Scholar 

  55. MacIntyre WJ, Go RT, King JL, Cook SA, Neumann DR, Saha GB, et al. Clinical outcome of cardiac patients with negative thallium-201 SPECT and positive rubidium-82 PET myocardial perfusion imaging. J Nucl Med. 1993;34:400–4.

    CAS  PubMed  Google Scholar 

  56. Klodas E, Miller T, Christian T, Hodge D, Gibbons R. Prognostic significance of ischemic electrocardiographic changes during vasodilator stress testing in patients with normal SPECT images. J Nucl Cardiol. 2003;10:4–8.

    Article  PubMed  Google Scholar 

  57. Chow B, Wong J, Yoshinaga K, Ruddy T, Williams K, deKemp R, et al. Prognostic significance of dipyridamole-induced ST depression in patients with normal 82Rb PET myocardial perfusion imaging. J Nucl Med. 2005;46:1095–101.

    PubMed  Google Scholar 

  58. Chow BJW, Dorbala S, Di Carli MF, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc Imaging. 2014;7:278–87. This was the largest multi-center observational registry to date to evaluate the prognostic value of PET MPI in obese patients.

    Article  PubMed  Google Scholar 

  59. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50–e103.

    Article  PubMed  Google Scholar 

  60. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156:13–22.

    Article  PubMed  Google Scholar 

  61. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368:666–78.

    Article  PubMed  Google Scholar 

  62. Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-Dehoff RM, Zhou Q, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120:863–70.

    Article  PubMed  Google Scholar 

  63. McAuley PA, Kokkinos PF, Oliveira RB, Emerson BT, Myers JN. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin Proc. 2010;85:115–21.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15:745–53.

    Article  PubMed  Google Scholar 

  65. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2:846–54.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Barbosa JA, Rodrigues AB, Mota CC, Barbosa MM, Simões e Silva AC. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods. Vasc Health Risk Manag. 2011;7:287–95.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Alpert M, Terry BE, Mulekar M, Cohen MV, Massey CV, Fan TM, et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol. 1997;80:736–40.

    Article  CAS  PubMed  Google Scholar 

  68. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart-failure. JACC Heart Fail. 2013;1:93–102. This state of the art paper examined the association between obesity and heart failure.

    Article  PubMed  Google Scholar 

  69. Gewirtz H. Cardiac PET: a versatile, quantitative measurement tool for heart failure management. JACC Cardiovasc Imaging. 2011;4:292–302.

    Article  PubMed  Google Scholar 

  70. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. PARR-2 Investigators. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  71. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. STICH Trial Investigators. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici P. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  CAS  PubMed  Google Scholar 

  73. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105:186–93.

    Article  PubMed  Google Scholar 

  74. Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation. 1998;98:1291–6.

    Article  CAS  PubMed  Google Scholar 

  75. Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, et al. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008;1:424–33.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Livingston EH, Langert J. The impact of age and Medicare status on bariatric surgical outcomes. Arch Surg. 2006;141:1115–20. discussion 21.

    Article  PubMed  Google Scholar 

  77. Livingston EH, Arterburn D, Schifftner TL, Henderson WG, DePalma RG. National Surgical Quality Improvement Program analysis of bariatric operations: modifiable risk factors contribute to bariatric surgical adverse outcomes. J Am Coll Surg. 2006;203:625–33.

    Article  PubMed  Google Scholar 

  78. Morino M, Toppino M, Forestieri P, Angrisani L, Allaix ME, Scopinaro N. Mortality after bariatric surgery: analysis of 13,871 morbidly obese patients from a national registry. Ann Surg. 2007;246:1002–7. discussion 7–9.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by Rb-82 PET as an Alternative Radiopharmaceutical to Tc-99m based Myocardial Perfusion Imaging-Comparative Effectiveness and Implementation Research in Canada- Rubidium-ARMI.

Compliance with Ethics Guidelines

Conflict of Interest

Benjamin J. Chow receives research and fellowship training support from GE Healthcare and educational support from TeraRecon Inc. and holds the Saul and Edna Goldfarb Chair in Cardiac Imaging Research. Rob S. Beanlands is a career investigator supported by the Heart and Stroke Foundation of Ontario and Tier 1 Chair in Cardiovascular Research supported by the University of Ottawa. He is a consultant for Lantheus Medical Imaging and JubilantDRAXImage (JDI).

Rob DeKamp and Ran Klein have received grant funding from a government/industry research program (partners: GE Healthcare, Nordion, Lantheus Medical Imaging, and JDI). Rob DeKamp and Ran Klein are consultant for, and receives research funding from JDI, and royalty revenues from rubidium generator technology and FlowQuant software licenses.

Punitha Arasaratnam and Chadi Ayoub declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. W. Chow.

Additional information

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasaratnam, P., Ayoub, C., Klein, R. et al. Positron Emission Tomography Myocardial Perfusion Imaging for Diagnosis and Risk Stratification in Obese Patients. Curr Cardiovasc Imaging Rep 8, 9304 (2015). https://doi.org/10.1007/s12410-014-9304-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9304-y

Keywords

Navigation