Skip to main content

Advertisement

Log in

Review of T1 Mapping Methods: Comparative Effectiveness Including Reproducibility Issues

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Myocardial T1 mapping by cardiovascular magnetic resonance (CMR) is a key emerging biomarker for quantification of myocardial disease. Native myocardial T1 changes with fat content, iron content, and increased myocardial extracellular water (oedema, focal or diffuse fibrosis, amyloidosis). With the addition of a contrast agent, the extracellular volume (ECV) can be estimated, a robust measure of interstitial space expansion. A number of cardiac T1 mapping methods are currently being used; a selection of these is described. Factors affecting the accuracy, precision and reproducibility of these methods are discussed, including the impact these will have in certain clinical circumstances. Challenges for delivery of T1 mapping to healthcare are examined, including validation, quality control, and protocol transfer between MR systems. As the technique becomes established, key methodology considerations for early adopters are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart. 2012;98:773–9.

    Article  PubMed  Google Scholar 

  2. Chan W, Duffy SJ, White DA, Gao X-M, Du X-J, Ellims AH, et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging. 2012;5:884–93.

    Article  PubMed  Google Scholar 

  3. Rao AD, Shah RV, Garg R, Abbasi SA, Neilan TG, Perlstein TS, et al. Aldosterone and myocardial extracellular matrix expansion in type 2 diabetes mellitus. Am J Cardiol. 2013;112:73–8.

    Article  CAS  PubMed  Google Scholar 

  4. Turkbey EB, Gai N, Lima JAC, van der Geest RJ, Wagner KR, Tomaselli GF, et al. Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging. Heart Rhythm. 2012;9:1691–7.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, et al. Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping. Circ Cardiovasc Imaging. 2011;4:636–40.

    Article  PubMed  Google Scholar 

  6. Beinart R, Khurram IM, Liu S, Yarmohammadi H, Halperin HR, Bluemke DA, et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm. 2013;10:1325–31.

    Article  PubMed  Google Scholar 

  7. Dall’Armellina E, Piechnik SK, Ferreira VM, Si QL, Robson MD, Francis JM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson. 2012;14:15.

    Article  PubMed  Google Scholar 

  8. Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, et al. Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T1 mapping. J Magn Reson Imaging. 2013;38:217–24.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging. 2013;6:806–22.

    Article  PubMed  Google Scholar 

  10. Ferreira VM, Piechnik SK, Dall’armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. T1 Mapping for the Diagnosis of Acute Myocarditis Using CMR: Comparison to T2-Weighted and Late Gadolinium Enhanced Imaging. JACC Cardiovasc Imaging. 2013. doi:10.1016/j.jcmg.2013.03.008.

    Google Scholar 

  11. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42.

    Article  PubMed  Google Scholar 

  12. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88.

    Article  PubMed  Google Scholar 

  13. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  14. Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6:373–83.

    Article  PubMed  Google Scholar 

  15. Dall’Armellina E, Ferreira VM, Kharbanda RK, Prendergast B, Piechnik SK, Robson MD, et al. Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction. JACC Cardiovasc Imaging. 2013;6:739–42.

    Article  PubMed  Google Scholar 

  16. Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.

    Article  PubMed  Google Scholar 

  17. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pastor A, Voigt T, Schaeffter T, Nagel E, Puntmann VO. Usefulness of Cardiac Magnetic Resonance in Early Assessment of Cardiomyopathies: Myocardial Fibrosis Is a Common Denominator. Curr Cardiovasc Imaging Rep. 2012;5:77–82.

    Article  Google Scholar 

  19. Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging. 2013. doi:10.1002/jmri.24078.

    PubMed Central  Google Scholar 

  20. Waterhouse DF, Ismail TF, Prasad SK, Wilson MG, O’Hanlon R. Imaging focal and interstitial fibrosis with cardiovascular magnetic resonance in athletes with left ventricular hypertrophy: implications for sporting participation. Br J Sports Med. 2012;46 Suppl 1:i69–77.

    Article  PubMed  Google Scholar 

  21. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.

    Article  PubMed  Google Scholar 

  22. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu L-Y, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.

    Article  PubMed  Google Scholar 

  24. Puntmann VO, D’Cruz D, Smith Z, Pastor A, Choong P, Voigt T, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging. 2013;6:295–301.

    Article  PubMed  Google Scholar 

  25. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84.

    Article  PubMed  Google Scholar 

  26. Won S, Davies-Venn C, Liu S, Bluemke DA. Noninvasive imaging of myocardial extracellular matrix for assessment of fibrosis. Curr Opin Cardiol. 2013;28:282–9.

    Article  PubMed  Google Scholar 

  27. Lu M, Zhao S, Yin G, Jiang S, Zhao T, Chen X, et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: a preliminary study. Eur J Radiol. 2013;82:e225–31.

    Article  PubMed  Google Scholar 

  28. Robbers LFHJ, Baars EN, Brouwer WP, Beek AM, Hofman MBM, Niessen HWM, et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging. 2012;5:423–6.

    Article  PubMed  Google Scholar 

  29. Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, et al. T1 Mapping with CMR Is Highly Sensitive for Fabry Disease Independent of Hypertrophy and Gender. Circ Cardiovasc Imaging. 2013. doi:10.1161/CIRCIMAGING.113.000482.

    Google Scholar 

  30. Liu S, Han J, Nacif MS, Jones J, Kawel N, Kellman P, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson. 2012;14:90.

    Article  CAS  PubMed  Google Scholar 

  31. Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265:724–32.

    Article  PubMed  Google Scholar 

  32. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JAC. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  33. Gai N, Turkbey EB, Nazarian S, van der Geest RJ, Liu C-Y, Lima JAC, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med. 2011;65:1407–15.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211:698–708.

    Article  CAS  PubMed  Google Scholar 

  35. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44. Myocardial extracellular volume correlates with collagen content as assessed by myocardial biopsy.

    Article  PubMed  Google Scholar 

  36. Choi E-Y, Hwang SH, Yoon YW, Park CH, Paek MY, Greiser A, et al. Correction with blood T1 is essential when measuring post-contrast myocardial T1 value in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2013;15:11.

    Article  PubMed  Google Scholar 

  37. Ugander M, Oki AJ, Hsu L-Y, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78.

    Article  CAS  PubMed  Google Scholar 

  38. Kawel N, Nacif M, Santini F, Liu S, Bremerich J, Arai AE, et al. Partition coefficients for gadolinium chelates in the normal myocardium: comparison of gadopentetate dimeglumine and gadobenate dimeglumine. J Magn Reson Imaging. 2012;36:733–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, et al. T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson. 2012;14:27.

    Article  PubMed  Google Scholar 

  40. Raman FS, Kawel-Boehm N, Gai N, Freed M, Han J, Liu C-Y, et al. Modified Look-Locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J Cardiovasc Magn Reson. 2013;15:64.

    Google Scholar 

  41. Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawel N, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson. 2011;13:75.

    Article  PubMed  Google Scholar 

  42. Flett AS, Sado DM, Quarta G, Mirabel M, Pellerin D, Herrey AS, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13:819–26.

    Article  PubMed  Google Scholar 

  43. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 Mapping for Myocardial Extracellular Volume Measurement by CMR: Bolus Only Versus Primed Infusion Technique. JACC Cardiovasc Imaging. 2013;6:955–62.

    Article  PubMed  Google Scholar 

  44. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed  Google Scholar 

  45. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63. Automated ECV mapping feasible for clinical workflow.

    Article  PubMed  Google Scholar 

  46. Xue H, Greiser A, Zuehlsdorff S, Jolly M-P, Guehring J, Arai AE, et al. Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Magn Reson Med. 2013;69:1408–20.

    Article  PubMed  Google Scholar 

  47. Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly M-P, et al. Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med. 2012;67:1644–55.

    Article  PubMed  Google Scholar 

  48. Cernicanu A, Axel L. Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Acad Radiol. 2006;13:686–93.

    Article  PubMed  Google Scholar 

  49. Pykett IL, Mansfield P. A line scan image study of a tumorous rat leg by NMR. Phys Med Biol. 1978;23:961.

    Article  CAS  PubMed  Google Scholar 

  50. Reeder SB, Herzka DA, McVeigh ER. Signal-to-noise ratio behavior of steady-state free precession. Magn Reson Med. 2004;52:123–30.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  PubMed  Google Scholar 

  52. Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, et al. Human Myocardium: Single-Breath-hold MR T1 Mapping with High Spatial Resolution—Reproducibility Study. Radiology. 2006;238:1004–12.

    Article  PubMed  Google Scholar 

  53. Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081–6.

    Google Scholar 

  54. Look DC, Locker DR. Time Saving in Measurement of NMR and EPR Relaxation Times. Rev Sci Instrum. 1970;41:250–1.

    Article  CAS  Google Scholar 

  55. Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson. 1992;96:608–12.

    CAS  Google Scholar 

  56. Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed  Google Scholar 

  57. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2013. doi:10.1002/mrm.24878.

    Google Scholar 

  58. Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA. T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys. 2005;32:1738–46.

    Article  PubMed  Google Scholar 

  59. Weingärtner S, Akçakaya M, Basha T, Kissinger KV, Goddu B, Berg S, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med. 2013. doi:10.1002/mrm.24761.

    PubMed  Google Scholar 

  60. Deichmann R, Hahn D, Haase A. Fast T1 mapping on a whole-body scanner. Magn Reson Med. 1999;42:206–9.

    Article  CAS  PubMed  Google Scholar 

  61. Song T, Stainsby JA, Ho VB, Hood MN, Slavin GS. Flexible cardiac T1 mapping using a modified Look-Locker acquisition with saturation recovery. Magn Reson Med. 2012;67:622–7.

    Google Scholar 

  62. Slavin GS, Stainsby JA. True T1 Mapping with SMART1Map: A Comparison with MOLLI. Proc Intl Soc Mag Reson Med. Salt Lake City; 2013. p. 1416.

  63. Coniglio A, Di Renzi P, Vilches Freixas G, Della Longa G, Santarelli A, Capparella R, et al. Multiple 3D inversion recovery imaging for volume T1 mapping of the heart. Magn Reson Med. 2013;69:163–70.

    Article  CAS  PubMed  Google Scholar 

  64. Clique H, Cheng H-LM, Marie P-Y, Felblinger J, Beaumont M. 3D myocardial T1 mapping at 3 T using variable flip angle method: Pilot study. Magn Reson Med. 2013. doi:10.1002/mrm.24688.

    PubMed  Google Scholar 

  65. Tsai J-M, Huang T-Y, Tseng Y-S, Lin Y-R. Free-breathing MOLLI: application to myocardial T(1) mapping. Med Phys. 2012;39:7291–302.

    Article  PubMed  Google Scholar 

  66. Fitts M, Breton E, Kholmovski EG, Dosdall DJ, Vijayakumar S, Hong KP, et al. Arrhythmia insensitive rapid cardiac T1 mapping pulse sequence. Magn Reson Med. 2012. doi:10.1002/mrm.24586.

    PubMed  Google Scholar 

  67. Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson. 2013;15:56.

    Article  PubMed  Google Scholar 

  68. Gai ND, Stehning C, Nacif M, Bluemke DA. Modified Look-Locker T1 evaluation using Bloch simulations: human and phantom validation. Magn Reson Med. 2013;69:329–36.

    Article  PubMed  Google Scholar 

  69. Nekolla S, Gneiting T, Syha J, Deichmann R, Haase A. T1 maps by K-space reduced snapshot-FLASH MRI. J Comput Assist Tomogr. 1992;16:327–32.

    Article  CAS  PubMed  Google Scholar 

  70. Park HW, Cho MH, Cho ZH. Real-value representation in inversion-recovery NMR imaging by use of a phase-correction method. Magn Reson Med. 1986;3:15–23.

    Article  CAS  PubMed  Google Scholar 

  71. Karlsen OT, Verhagen R, Bovée WM. Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med. 1999;41:614–23.

    Article  CAS  PubMed  Google Scholar 

  72. Tong CY, Prato FS. A novel fast T1-mapping method. J Magn Reson Imaging. 1994;4:701–8.

    Article  CAS  PubMed  Google Scholar 

  73. Deshpande VS, Chung Y-C, Zhang Q, Shea SM, Li D. Reduction of transient signal oscillations in true-FISP using a linear flip angle series magnetization preparation. Magn Reson Med. 2003;49:151–7.

    Article  PubMed  Google Scholar 

  74. Foxall DL. Starter sequence for steady-state free precession imaging. Magn Reson Med. 2005;53:919–29.

    Article  CAS  PubMed  Google Scholar 

  75. Kellman P, Herzka DA, Arai AE, Hansen MS. Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson. 2013;15:63.

    Article  PubMed  Google Scholar 

  76. Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med. 2013. doi:10.1002/mrm.24793.

    Google Scholar 

  77. Ogg RJ, Kingsley RB, Taylor JS. WET, a T1- and B1-Insensitive Water-Suppression Method for in Vivo Localized 1H NMR Spectroscopy. J Magn Reson B. 1994;104:1–10.

    Article  CAS  PubMed  Google Scholar 

  78. Krishnamurthy R, Pednekar A, Kouwenhoven M, Cheong B, Muthupillai R. Evaluation of a Subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3 T. J Cardiovasc Magn Reson. 2013;15:68.

    Article  PubMed  Google Scholar 

  79. Weber OM, Speier P, Scheffler K, Bieri O. Assessment of magnetization transfer effects in myocardial tissue using balanced steady-state free precession (bSSFP) cine MRI. Magn Reson Med. 2009;62:699–705.

    Article  PubMed  Google Scholar 

  80. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70:664–70.

    Article  CAS  Google Scholar 

  81. Reddick WE, Ogg RJ, Steen RG, Taylor JS. Statistical error mapping for reliable quantitative T1 imaging. J Magn Reson Imaging. 1996;6:244–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3 T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson. 2012;14:26.

    Article  PubMed  Google Scholar 

  83. Messroghli DR, Bainbridge GJ, Alfakih K, Jones TR, Plein S, Ridgway JP, et al. Assessment of Regional Left Ventricular Function: Accuracy and Reproducibility of Positioning Standard Short-Axis Sections in Cardiac MR Imaging1. Radiology. 2005;235:229–36.

    Article  PubMed  Google Scholar 

  84. Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson. 2013;15:13.

    Article  PubMed  Google Scholar 

  85. Liu C-Y, Chang Liu Y, Wu C, Armstrong A, Volpe GJ, van der Geest RJ, et al. Evaluation of Age related Interstitial Myocardial Fibrosis with Cardiac Magnetic Resonance Contrast-Enhanced T1 Mapping in the Multi-ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.05.078.

    Google Scholar 

  86. Von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson. 2013;15:53.

    Article  Google Scholar 

  87. Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, et al. Myocardial T1 mapping with MRI: Comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging. 2011;34:1367–73.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

David M. Higgins and James C. Moon declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Higgins.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, D.M., Moon, J.C. Review of T1 Mapping Methods: Comparative Effectiveness Including Reproducibility Issues. Curr Cardiovasc Imaging Rep 7, 9252 (2014). https://doi.org/10.1007/s12410-013-9252-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-013-9252-y

Keywords

Navigation