Skip to main content
Log in

Iterative Reconstruction Techniques: What do they Mean for Cardiac CT?

  • Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Cardiac computed tomography (CT) is a highly demanding and relatively new CT application that has evolved during the last two decades and for the last decade has been regarded as a routine technology. The success of cardiac CT mainly depends on two classes of technology: CT hardware and image reconstruction software. The technical requirements of cardiac CT are easy to state: increased temporal resolution, increased spatial resolution, decreased patient dose, and improved workflow. Faster rotation times, dual source dual detector gantries, improved z-coverage, smaller slice thicknesses and improved dose management are solutions on the hardware side that help to fulfil these requirements. The solutions on the software side are more complex. There have been several new developments in the area of reconstruction techniques and these are typically subsumed under the term “iterative image reconstruction” to indicate that this is a step beyond conventional filtered back projection. The main developments in iterative image reconstruction for clinical CT aim at noise reduction, contrast enhancement and motion artifact reduction. The major CT vendors implement different approaches in their products, while in parallel, research departments are proposing future solutions. Most of the well-known iterative approaches are not specific to cardiac CT. Some vendors, however, provide specific cardiac CT solutions. This article reviews the current approaches, product as well as prototype software, with a focus on vendor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lackner K, Thurn P. Computed tomography of the heart: ECG-gated and continuous scans. Radiology. 1981;140:413–20.

    PubMed  CAS  Google Scholar 

  2. Shemesh J, Apter S, Rozenman J, et al. Calcification of coronary arteries: detection and quantification with double-helix CT. Radiology. 1995;197:779–83.

    PubMed  CAS  Google Scholar 

  3. Boyd D, Lipton M. Cardiac computed tomography. Proc IEEE. 1983;71:281.

    Article  Google Scholar 

  4. Kachelrieß M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys. 1998;25(12):2417–31.

    Article  PubMed  Google Scholar 

  5. Kachelrieß M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys. 2000;27(8):1881–902.

    Article  PubMed  Google Scholar 

  6. Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT – initial experience. Radiology. 2000;217:564–71.

    PubMed  CAS  Google Scholar 

  7. Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000;102:2823–8.

    Article  PubMed  CAS  Google Scholar 

  8. Achenbach S, Giesler T, Ropers D, et al. Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram gated multislice spiral computed tomography. Invest Radiol. 2003;38(2):119–28.

    Article  PubMed  Google Scholar 

  9. Flohr T, McCollough C, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  10. Kachelrieß M, Knaup M, Kalender WA. Multi-threaded cardiac CT. Med Phys. 2006;33(7):2435–47.

    Article  PubMed  Google Scholar 

  11. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  12. Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography – what has been achieved and what needs to be done. Eur Radiol. 2011;21:505–9.

    Article  PubMed  Google Scholar 

  13. Nielsen T, Manzke R, Proksa R, Grass M. Cardiac cone-beam CT volume reconstruction using ART. Med Phys. 2005;32(4):851–60.

    Article  PubMed  CAS  Google Scholar 

  14. Bruder H, Raupach R, Sunnegardh J, et al. Adaptive iterative reconstruction. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 J. p. 1–12.

  15. Kachelrieß M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering (MAF) for conventional and spiral single-slice, multi-slice and cone-beam CT. Med Phys. 2001;28(4):475–90.

    Article  PubMed  Google Scholar 

  16. Willemink M, Jong P, Leiner T, et al. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013. doi:10.1007/s00330-012-2765-y.

    Google Scholar 

  17. Nelson R, Feuerlein S, Boll D. New iterative reconstruction techniques for cardiovascular computed tomography: How do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.

    Article  PubMed  Google Scholar 

  18. Leipsic J, Heilbron B, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.

    Article  PubMed  Google Scholar 

  19. Marin D, Nelson R, Schindera S, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology. 2010;254:145–53.

    Article  PubMed  Google Scholar 

  20. Leipsic J, LaBounty T, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195(3):655–60.

    Article  PubMed  Google Scholar 

  21. • Scheffel H, Stolzmann P, Christopher L, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol. 2012;81:363–9. Recent cardiac CT study evaluating Veo.

    Article  Google Scholar 

  22. Cornfeld D, Israel G, Detroy E, et al. Impact of adaptive statistical iterative reconstruction (ASIR) on radiation dose and image quality in aortic dissecion studies: a qualitative and quantiative analysis. AJR Am J Roentgenol. 2011;196(3):336–40.

    Article  Google Scholar 

  23. Mieville F, Gudinchet F, Rizzo E, et al. Paediatric cardiac CT examinations: imapct of the iterative reconstruction method ASIR on image quality – preliminary findings. Pediatr Radiol. 2011;41:1154–64.

    Article  PubMed  Google Scholar 

  24. Sato J, Akahane M, Inano S, et al. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol. 2012;30:146–53.

    Article  PubMed  Google Scholar 

  25. Leipsic J, Labounty T, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195(3):649–54.

    Article  PubMed  Google Scholar 

  26. Thibault JB, Sauer K, Bouman C, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34:4526–44.

    Article  PubMed  Google Scholar 

  27. Singh S, Kalra M, Do S, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.

    Article  PubMed  Google Scholar 

  28. • Hosch W, Stiller W, Mueller D, et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur Radiol. 2012;81:3568–76. Recent cardiac CT study evaluating iDose.

    Article  Google Scholar 

  29. Hou Y, Liu X, Xv S, et al. Comparison of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J Roentgenol. 2012;199:588–94.

    Article  PubMed  Google Scholar 

  30. Rajiah P, Schoenhagen P, Mehta D, et al. Low-dose wide-detector array thoracic aortic CT angiography using an iterative reconstruction technique results in improved image qualtiy with lower noise and fewer artifacts. J Cardiovasc Comput Tomogr. 2012;6(3):205–13.

    Article  PubMed  Google Scholar 

  31. Bonner J. CT vendors concentrate on new systems cost-effectiveness and lower doses. ECR Today. 2012;2:17–8.

    Google Scholar 

  32. Kligerman S, Read K, Dhanantwari A, et al. Iterative model reconstruction (IMR): a novel method of noise reduction to improve diagnostic confidence in obese patients undergoing CT pulmonary angiography (CTPA). Radiological Society of North America 2012 Scientific Assembly and Annual Meeting 2011. Available from: rsna2012.rsna.org/search/event_display.cfm?em_id = 12033970.

  33. Bittencourt M, Schmidt B, Seltmann M, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27:1081–7.

    Article  PubMed  Google Scholar 

  34. Park E, Lee W, Kim K, et al. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose. Int J Cardiovasc Imaging. 2012;28(7):1775–86.

    Article  PubMed  Google Scholar 

  35. Renker M, Ramachandra A, Schoepf U, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(4):225–30.

    Article  PubMed  Google Scholar 

  36. Ebersberger U, Tricarico F, Schoepf U, et al. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol. 2013;23(1):125–32.

    Article  PubMed  Google Scholar 

  37. Han B, Grant K, Garberich R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr. 2012;6(3):200–4.

    Article  PubMed  Google Scholar 

  38. Moscariello A, Takx R, Schoepf U, et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique – comparison with traditional filtered back projection. Eur Radiol. 2011;21(10):2130–8.

    Article  PubMed  Google Scholar 

  39. • Wang R, Schoepf U, Wu R, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol. 2012;81(11):3141–5. Recent cardiac CT study evaluating SAFIRE.

    Article  PubMed  Google Scholar 

  40. Winklehner A, Karlo C, Puippe G, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol. 2011;21(12):2521–6.

    Article  PubMed  Google Scholar 

  41. Kaplan M, Yang Z, Zamyatin A. Multi-resolution diffusion tensor filter for preserving noise power spectrum in low-dose CT imaging. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Conference Record, M18–82.

  42. Zamyatin A, Yang Z, Akino N, Nakanishi S. Streak artifacts and noise reduction in low dose computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, MIC21.S-108.

  43. Yang Z, Zamyatin A, Akino N. Effective data-domain noise and streak reduction for x-ray CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 290–3.

  44. Yang Z, Silver M, Noshi Y. Adaptive weighted anisotropic diffusion for computed tomography denoising, 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 11–5.

  45. Tomizawa N, Nojo T, Akahane M, et al. Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr. 2012;6:318–24.

    Article  PubMed  Google Scholar 

  46. Chen M, Shanbhag S, Arai A. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology. 2013. doi:10.1148/radiol.13122621. Recent cardiac CT study evaluating AIDR3D.

    Google Scholar 

  47. Chen M, Steigner M, Leung S, et al. Simulated 50 % radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three dimensions (AIDR3D). Int J Cardiovasc Imaging. 2013. doi:10.1007/s10554-013-0190-1.

    Google Scholar 

  48. Shi D, Zou Y, Zamyatin A. Weighted simultaneous algebraic reconstruction technique. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2011. p. 160–2.

  49. Zamyatin A, Dinu M, Shi D. Multi-scale iterative reconstruction. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011. MIC21.S-111.

  50. Zamyatin A, Shi D, Dinu M. Extension of axial coverage and artifact reduction in iterative reconstruction in computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011, MIC21.S-102.

  51. Shi D, Zamyatin A, Dinu M. Total variation regularized weighted simultaneous algebraic reconstruction technique – a parallel scheme. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 57–60.

  52. Do S, Cho S, Karl W, et al. Accurate model-based high resolution cardiac image reconstruction in dual source CT. Trans Med Imaging. 2009;330–3.

  53. Do S, Karl W, Liang Z, et al. A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys Med Biol. 2011;56:7109–25.

    Article  PubMed  Google Scholar 

  54. Achenbach S, Ropers D, Holle J, et al. In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology. 2000;216:457–63.

    PubMed  CAS  Google Scholar 

  55. Schöndube H, Allmendinger T, Kappler S,et al. Temporal resolution and motion artifacts in dual-source cardiac CT and single-source CT with iterative reconstruction. Proceedings of the Second International Conference on Image Formation in X-ray Computed Tomography. 2012. p. 135–9.

  56. Maaß C, Kachelrieß M. Quantification of temporal resolution and its reliability in the context of TRI-PICCS and dual source CT. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79611 M. p. 1–7

  57. Bhagalia R, Pack J, Miller J, Iatrou M. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography. Med Phys. 2012;39(7):4245–54.

    Article  PubMed  Google Scholar 

  58. Pack J, Claus B. An analysis of motion artifacts in CT and implications for motion compensation. Proceedings of the 2nd International Conference on Image Formation in X-ray Computed Tomography. 2011. p. 322–5.

  59. Stevendaal U, Berg J, Lorenz C, Grass M. A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography. Med Phys. 2008;35(7):3239–51.

    Article  PubMed  Google Scholar 

  60. Isola A, Metz C, Schaap M, et al. Coronary segmentation based motion corrected cardiac CT reconstruction. Proc IEEE. 2010;2026–9.

  61. Isola A, Ziegler A, Schäfer D, et al. Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT. Comput Med Imaging Graph. 2010;34:149–59.

    Article  PubMed  CAS  Google Scholar 

  62. Isola A, Grass M, Niessen W. Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med Phys. 2010;37(3):1093–109.

    Article  PubMed  Google Scholar 

  63. Isola A, Metz, Schaap M, Klein S, et al. Cardiac motion-corrected iterative cone-beam CT reconstruction using semi-automatic minimum cost path-based coronary centerline extraction. Comput Med Imaging Graph. 2012;36:215–26.

    Article  PubMed  CAS  Google Scholar 

  64. Schöndube H, Kunze H, Bruder H, Stierstorfer K. Using the positivity constraint to enhance temporal resolution in CT. Proceedings of the First International Conference on Image Formation in X-ray Computed Tomography. 2010. p. 189–93.

  65. Schöndube H, Allmendinger T, Stierstorfer K, et al. Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 N. p. 1–7.

  66. Apfaltrer P, Schöndube H, Schoepf U, et al. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience. Eur J Radiol. 2013;82:270–4.

    Article  PubMed  Google Scholar 

  67. Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 1–4.

  68. •• Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys. 2013;40(3):031901. Motion compensation approach that does not require adjacent phases to be reconstructed and thus has the potential to improve temporal resolution at minimum patient dose.

    Article  PubMed  Google Scholar 

  69. Katsevich A, Zamyatin A, Silver M. A novel motion estimation algorithm. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography 2012. p. 326–9.

  70. Krylov R, Zamyatin A. Algebraic reconstruction technique with motion compensation, Proc SPIE 8668, paper 8668-45

  71. Segars W, Mahes M, Beck T, et al. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008;35(8):3800–8.

    Article  PubMed  CAS  Google Scholar 

  72. Cammin J, Taguchi K. Motion compensated filtered back projection for non-rigid deformation. Proceedings of the first International Conference on Image Formation in X-Ray Computed Tomography. 2010. p. 162–5.

  73. Cammin J, Khurd P, Kamen A, et al. Combined motion estimation and motion-compensated FBP for cardiac CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 201. p. 136–9.

  74. Tang Q, Cammin J, Srivastava S, Taguchi K. A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys. 2012;39(7):4291–305.

    Article  PubMed  Google Scholar 

  75. Chen G, Tang J, Hsieh J. Temporal resolution improvement using PICCS in MDCT cardiac imaging. Med Phys. 2009;36(6):2130–5.

    Article  PubMed  Google Scholar 

  76. Tang J, Hsieh J, Chen G. Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys. 2010;37(8):4377–88.

    Article  PubMed  Google Scholar 

  77. Ritschl L, Sawall S, Knaup M, Hess A, Kachelrieß M. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol. 2012;57(6):1517–25.

    Article  PubMed  Google Scholar 

  78. Hara A, Paden R, Silva A, et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol. 2009;193(3):764–71.

    Article  PubMed  Google Scholar 

  79. Leipsic J, Nguyen G, Brown J, et al. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2010;195(5):1095–9.

    Article  PubMed  Google Scholar 

  80. Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264(2):445–54.

    Article  PubMed  Google Scholar 

  81. Kulkarni N, Uppot R, Eisner B, Sahani D. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go? Radiology. 2012;265(1):158–66.

    Article  PubMed  Google Scholar 

  82. Schindera S, Diedrichsen L, Müller H, et al. Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology. 2011;260(2):454–62.

    Article  PubMed  Google Scholar 

  83. Ren Q, Dewan S, Li M, et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012;81(10):2597–601.

    Article  PubMed  Google Scholar 

  84. Yamada Y, Jinzaki M, Hosokawa T, et al. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur J Radiol. 2012;81(12):4185–95.

    Article  PubMed  Google Scholar 

  85. Martinsen A, Sather H, Hol P, et al. Iterative reconstruction reduces abdominal CT dose. Eur J Radiol. 2012;81(7):1483–7.

    Article  PubMed  Google Scholar 

  86. Gervaise A, Osemont B, Lecocg S, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22(2):295–301.

    Article  PubMed  Google Scholar 

  87. Prakash P, Kalra M, Digumarthy S, et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr. 2010;34(1):40–5.

    Article  PubMed  Google Scholar 

  88. Pontana F, Duhamel A, Pagniez J, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21(3):636–43.

    Article  PubMed  Google Scholar 

  89. Noel P, Fingerle A, Renger B, et al. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol. 2011;197(6):1404–9.

    Article  PubMed  Google Scholar 

  90. Sagara Y, Hara A, Pavlicek W, et al. Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol. 2010;195(3):713–9.

    Article  PubMed  Google Scholar 

  91. Hu X, Ding X, Wu R, Zhang M. Radiation dose of non-enhanced chest CT can be reduced 40 % by using iterative reconstruction in image space. Clin Radiol. 2011;66(11):1023–9.

    Article  PubMed  CAS  Google Scholar 

  92. Lee S, Park S, Kim A, et al. A prospective comparison of standard-dose CT enterography and 50 % reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol. 2011;197(1):50–7.

    Article  PubMed  Google Scholar 

  93. May M, Wüst W, Brand M, et al. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol. 2011;46(7):46–70.

    Article  Google Scholar 

  94. Kambadakone A, Chaudhary N, Desai G, et al. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2011;196(6):743–52.

    Article  Google Scholar 

  95. Mitsumori L, Shuman W, Busey J, et al. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol. 2012;22(1):138–43.

    Article  PubMed  Google Scholar 

  96. Prakash P, Kalra M, Kambadakone A, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol. 2010;45(4):202–10.

    Article  PubMed  Google Scholar 

  97. Vorona G, Ceschin R, Clayton B, et al. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study. Pediatr Radiol. 2011;41(9):1174–82.

    Article  PubMed  Google Scholar 

  98. Korn A, Fenchel M, Bender B, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJR Am J Neuroradiol. 2012;33(2):218–24.

    Article  CAS  Google Scholar 

  99. Bulla S, Blanke P, Hassepass F, et al. Reducing the radiation dose for low-dose CT of the paranasal sinuses using iterative reconstruction: feasibility and image quality. Eur J Radiol. 2012;81(9):2246–50.

    Article  PubMed  Google Scholar 

  100. Kilic K, Erbas G, Guryildirim M, et al. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol. 2011;32(9):1578–82.

    Article  PubMed  CAS  Google Scholar 

  101. Rapalino O, Kamalian S, Payabvash S, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33(4):609–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Christian Hofmann who helped prepare the manuscript. He also thanks Drs. Herbert Bruder, Marcus Chen, Michael Grass, Waldemar Hosch, Jiang Hsieh, Thomas Koehler, Rainer Raupach, Patrik Rogalla, Wolfram Stiller, Joachim Wildberger and Alexander Zamyatin for providing input and for technical discussions.

Conflict of Interest

Marc Kachelrieß declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kachelrieß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachelrieß, M. Iterative Reconstruction Techniques: What do they Mean for Cardiac CT?. Curr Cardiovasc Imaging Rep 6, 268–281 (2013). https://doi.org/10.1007/s12410-013-9203-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9203-7

Keywords

Navigation