Skip to main content
Log in

Cardiac CT Scanner Technology: What Is New and What Is Next?

  • Cardiac Computed Tomography (Todd C. Villines, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Technical specifications for multi-detector row computed tomography (CT) scanners from different manufacturers were very similar until the introduction of 64-slice scanners but then began to diverge with fundamental differences in the number of X-ray sources, detector geometry, gantry rotation time, and reconstruction algorithms. These hardware and software advancements were largely driven by clinical requirements for cardiac CT. This article provides an overview of technologies available on state-of-the-art CT systems and the clinical needs they seek to address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Halliburton S, Dey D, Einstein A, et al. State-of-the-art in CT Hardware and Scan Modes for Cardiovascular CT. J Cardiovasc Comput Tomogr. 2012;6:154–63.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Durand S, Paul JF. Comparison of image quality between 70 kVp and 80 kVp: application to paediatric cardiac CT. Eur Radiol. 2014;24(12):3003–9.

    Article  PubMed  Google Scholar 

  3. Meyer M, Haubenreisser H, Schoepf UJ, et al. Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology. 2014;273(2):373–82.

    Article  PubMed  Google Scholar 

  4. Kang DK, Schoepf UJ, Bastarrika G, Nance Jr JW, Abro JA, Ruzsics B. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.

    Article  PubMed  Google Scholar 

  5. So A, Lee TY, Imal Y, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual energy CT: a preliminary experience. J Cardiovasc Comput Tomogr. 2011;5(6):430–2.

    Article  PubMed  Google Scholar 

  6. Roessl E, Herrmann C, Kraft E, Proksa R. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout. Med Phys. 2011;38:6416.

    Article  PubMed  Google Scholar 

  7. So A, Hsieh J, Narayanan S, et al. Dual-energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr. 2012;6:308–17.

    Article  PubMed  Google Scholar 

  8. Rajiah P, Halliburton SS. Dual energy imaging in cardiovascular CT: current status and impact on radiation, contrast and accuracy. Curr Cardiovasc Imaging Rep. 2014;7:9289.

    Article  Google Scholar 

  9. Arnoldi E, Lee YS, Ruzsics B, et al. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011;5:421–9.

    Article  PubMed  Google Scholar 

  10. Bauer RW, Kerl JM, Fischer N, et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3T MRI. Am J Roentgenol. 2010;195:639–46.

    Article  Google Scholar 

  11. Sánchez-Gracián DC, Pernas RO, López CT, et al. Quantitative myocardial perfusion with stress dual-energy CT: iodine concentration differences between normal and ischemic or necrotic myocardium. Initial experience. Eur Radiol. 2015; 1–9. This study demonstrates the ability to not only identify iodine but also quantify its concentration using dual energy CT. This may reduce interobserver variability in the discrimination of normal and diseased myocardium with CT and improve the accuracy compared to single energy CT.

  12. Kim SM, Chang SA, Shin W, Choe YH. Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. J Comput Assist Tomogr. 2014;38:44–52.

    Article  PubMed  Google Scholar 

  13. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81:3703–10.

    Article  PubMed  Google Scholar 

  14. Meinel FG, De Cecco CN, Schoepf UJ, et al. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? comparison with SPECT. Radiology. 2014;270:708–16.

    Article  PubMed  Google Scholar 

  15. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol. 2008;18:2414–24.

    Article  PubMed  Google Scholar 

  16. Barreto M, Schoenhagen P, Nair A, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2:234–42.

    Article  PubMed  Google Scholar 

  17. Schwarz F, Nance Jr JW, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012;264:700–7.

    Article  PubMed  Google Scholar 

  18. Yamark D, Pavlicek W, Boltz T, Panse PM, Akay M. Coronary calcium quantification using contrast-enhanced dual-energy computed tomographic scans. J Appl Clin Med Phys. 2013;14:4014.

    Google Scholar 

  19. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multi detector CT in anthrophomorphically moving heart phantom. Radiology. 2008;249:119–26.

    Article  PubMed  Google Scholar 

  20. Boll DT, Merkle EM, Paulson EK, Fleiter TR. Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology. 2008;247:687–95.

    Article  PubMed  Google Scholar 

  21. Secchi F, De Cecco CN, Spearman JV, et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2015;56(4):413–8.

    Article  PubMed  Google Scholar 

  22. Hazirolan T, Akpinar B, Unal S, Gumruk F, Haliloglu M, Alibek S. Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol. 2008;68:442–5.

    Article  PubMed  Google Scholar 

  23. Numburi UD, Schoenhagen P, Flamm SD, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. Am J Roentgenol. 2010;195:486–93.

    Article  Google Scholar 

  24. Chandarana H, Godoy MC, Vlahos I, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology. 2008;249:692–700.

    Article  PubMed  Google Scholar 

  25. Sommer WH, Graser A, Becker CR, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010;21:315–21.

    Article  PubMed  Google Scholar 

  26. Stolzmann P, Frauenfelder T, Pfammatter T, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249:682–91.

    Article  PubMed  Google Scholar 

  27. Maturen KE, Kleaveland PA, Kaza RK, et al. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr. 2011;35:742–6.

    Article  PubMed  Google Scholar 

  28. Shaida N, Bowden DJ, Barrett T, et al. Acceptability of virtual unenhanced CT of the aorta as a replacement for the conventional unenhanced phase. Clin Radiol. 2012;67:461–7.

    Article  CAS  PubMed  Google Scholar 

  29. Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Investig Radiol. 2010;45:347–53.

    Google Scholar 

  30. Dubourg B, Caudron J, Lestrat JP, Bubenheim M, Lefebvre V, Godin M, et al. Single-source dual-energy CT angiography with reduced iodine load in patients referred for aortoiliofemoral evaluation before transcatheter aortic valve implantation: impact on image quality and radiation dose. Eur Radiol. 2014;24(11):2659–68. This study demonstrates CT images of sufficient quality for aortoiliofemoral evaluation before transcatheter aortic valve implantation (TAVI), a rapidly growing indication for cardiovascular CT, can be obtained with a 50% reduction in iodine load if dual energy, rather than single energy, techniques are used to acquire data.Low-contrast dose is preferred in many TAVI patients with severe renal dysfunction, in whom the intravenous administration of iodinated contrast can result in kidney damage.

    Article  PubMed  Google Scholar 

  31. Carrascosa P, Leipsic JA, Capunay C, et al. Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography. Eur J Radiol. 2015;84(10):1915–20.

    Article  PubMed  Google Scholar 

  32. Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.

    Article  CAS  PubMed  Google Scholar 

  33. Pelc N. Ann Biomed Eng. 2014;42(2):260–8.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tanami Y, Jinzaki M, Yamada M, Imai Y, Seqawa K, Kuribayashi S. Improvement on in-stent lumen measurement accuracy with new high-definition CT in a phantom model: comparison with conventional 64-detector row CT. Int J Cardiovasc Imaging. 2012;28(2):337–42.

    Article  PubMed  Google Scholar 

  35. Yang WJ, Zhang H, Li JY, et al. High-definition computed tomography for coronary artery stents imaging compared with standard-definition 64-row multidetector computed tomography: an initial in vivo study. J Comput Assist Tomogr. 2012;36(3):295–300.

    Article  PubMed  Google Scholar 

  36. Fuchs TA, Stehli J, Fietchter M, et al. First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64 slice computed tomography. Int J Cardiovasc Imaging. 2013;29:1409–16.

    Article  PubMed  Google Scholar 

  37. von Spiczak J, Morsback F, Winklhofer S, et al. Coronary artery stent imaging with CT using an integrated electronics detector and iterative reconstructions: first in vitro experience. J Cardiovasc Comput Tomogr. 2013;7(4):215–22.

    Article  Google Scholar 

  38. Morsbach F, Desbiolles L, Plass A, et al. Stenosis quantification in coronary CT angiography: impact of an integrated circuit detector with iterative reconstruction. Investig Radiol. 2013;48:32–40.

    Article  Google Scholar 

  39. Ebner L, Knobloch F, Huber A, et al. Feasible dose reduction in routine chest computed tomography maintaining constant image quality using the last three scanner generations: from filtered back projection to sinogram-affirmed iterative reconstruction and impact of the novel fully integrated detector design minimizing electronic noise. Clin Imaging Sci. 2014;4:38.

    Article  Google Scholar 

  40. Renker M, Ramachandra A, Schoepf JU, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5:225–30.

    Article  PubMed  Google Scholar 

  41. Tomizawa N, Nojo T, Akahane M, et al. Adaptive iterative dose reduction in coronary CT angiography using 320 row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr. 2012;6:318–24.

    Article  PubMed  Google Scholar 

  42. Hou Y, Xu S, Guo W, et al. The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT. Eur J Radiol. 2012;81(12):3905–11.

    Article  PubMed  Google Scholar 

  43. Leipsic J, Labounty TM, Min JK, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. Am J Roentgenol. 2010;195:655–60.

  44. Layritz C, Schmid J, Achenbach S, et al. Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. Eur Heart J Cardiovasc Imaging. 2014;15(11):1238–45.

    Article  PubMed  Google Scholar 

  45. Stehli J, Fuchs TA, Bull S, et al. Accuracy of coronary CT angiography using a submillisevert fraction of radiation exposure. J Am Coll Cardiol. 2014;64:772–80.

    Article  PubMed  Google Scholar 

  46. Halpern EJ, Gingold EL, White H, et al. Evaluation of coronary artery image quality with knowledge based iterative model reconstruction. Acad Radiol. 2014;21:805–11.

    Article  PubMed  Google Scholar 

  47. Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.

    Article  PubMed  Google Scholar 

  48. Deseive S, Chen M, Korosoglou G, et al. Prospective randomized trial on radiation dose estimates of CT angiography applying iterative image reconstruction. The protection V study. J Am Coll Cardiol Img. 2015;8(8):888–96.

    Article  Google Scholar 

  49. Hou J, Ma Y, Fan W. Diagnostic accuracy of low-dose 256-slice multi-detector coronary CT angiography using iterative reconstruction in patients with suspected coronary artery disease. Eur Radiol. 2014;24:3–11. This clinical validation study evaluates images reconstructed from low dose data using an iterative reconstruction technique. These low dose images demonstrate satisfactory image quality and high diagnostic accuracy for the evaluation of coronary artery disease in comparison to invasive coronary angiography. The study also highlights, however, that even this advanced reconstruction technique is limited in the assessment of coronary stenosis in patients with a high calcium burden.

    Article  PubMed  Google Scholar 

  50. Yin WH, Lu B, Li N, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JAm Coll Cardiol Img. 2013;6(12):1239–49.

    Article  Google Scholar 

  51. Pontone G, Andreini D, Bartorelli AL. Feasibility and diagnostic accuracy of a low radiation exposure protocol for prospective ECG-triggering coronary MDCT angiography. Clin Radiol. 2012;67:207–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra S. Halliburton.

Ethics declarations

Conflict of Interest

Dr. Rajiah reports he has received speaker fees from Philips Healthcare during the writing of this paper. Dr. Halliburton reports she is a full-time employee of Philips Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halliburton, S.S., Rajiah, P. Cardiac CT Scanner Technology: What Is New and What Is Next?. Curr Cardiovasc Imaging Rep 9, 8 (2016). https://doi.org/10.1007/s12410-016-9370-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-016-9370-4

Keywords

Navigation