Skip to main content

Advertisement

Log in

Cardiac PET/MRI

  • Technological Advances in Cardiac Multi-modality Imaging (TH Schindler, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2013

Abstract

Medical imaging plays an important role in clinical management of patients with cardiac diseases and in preclinical and clinical research. The recent availability of hybrid PET/MRI devices that combine positron emission tomography (PET) with magnetic resonance imaging (MRI) opens up new opportunities. Technical advancements have been necessary to make the two systems with different underlying principles work well together. Growing evidence points to a significant value of this novel modality for imaging of the myocardium and the coronary arteries in order to gain broad insight into the morphological, functional, molecular and cellular aspects of cardiac pathophysiology. PET/MRI can deliver the combined information of stand-alone PET and MRI with improved spatial and temporal co-registration; it can additionally be used to improve PET image quality and quantification accuracy by addressing factors such as motion and partial volume effects, making PET/MRI more than its parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization. The global burden of disease: 2004 update. World Health Organization, Geneva. 2008. Available at http://www.who.int/evidence/bod.

  2. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  3. Naya M, Di Carli MF. Myocardial perfusion PET/CT to evaluate known and suspected coronary artery disease. Q J Nucl Med Mol Imaging. 2010;54:145–56.

    PubMed  CAS  Google Scholar 

  4. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  PubMed  CAS  Google Scholar 

  5. Wehrl HF, Judenhofer MS, Wiehr S, Pichler B. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S56–68.

    Article  PubMed  Google Scholar 

  6. Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S86–92.

    Article  PubMed  Google Scholar 

  7. • Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S121–30. Account of possible cardiac applications of combined PET/MR.

    Article  PubMed  Google Scholar 

  8. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2:412–24.

    Article  PubMed  Google Scholar 

  9. Bax JJ, Visser FC, van Lingen A, Cornel JH, Fioretti PM, van der Wall EE. Metabolic imaging using F18-fluorodeoxyglucose to assess myocardial viability. Int J Card Imaging. 1997;13:145–55.

    Article  PubMed  CAS  Google Scholar 

  10. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15:442–55.

    Article  PubMed  Google Scholar 

  11. Stegger L, Schäfers K, Kopka K, et al. Molecular cardiovascular imaging using scintigraphic methods. Eur Radiol. 2007;17:1422–32.

    Article  PubMed  Google Scholar 

  12. Kajander SA, Joutsiniemi E, Saraste M, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84.

    Article  PubMed  Google Scholar 

  13. Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG. Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging. 2006;33:584–8.

    Article  PubMed  Google Scholar 

  14. Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, Schäfers KP. List mode-driven cardiac and respiratory gating in PET. J Nucl Med. 2009;50:674–81.

    Article  PubMed  Google Scholar 

  15. Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol. 2005;50:3313–22.

    Article  PubMed  CAS  Google Scholar 

  16. Dawood M, Büther F, Jiang X, Schäfers KP. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging. 2008;27:1164–75.

    Article  PubMed  Google Scholar 

  17. Schaefer WM, Lipke CS, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med. 2004;45:74–9.

    PubMed  Google Scholar 

  18. Slart RH, Bax JJ, de Jong RM, et al. Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease. J Nucl Med. 2004;45:176–82.

    PubMed  Google Scholar 

  19. Hofman HA, Knaapen P, Boellaard R, et al. Measurement of left ventricular volumes and function with O-15-labeled carbon monoxide gated positron emission tomography: comparison with magnetic resonance imaging. J Nucl Cardiol. 2005;12:639–44.

    Article  PubMed  Google Scholar 

  20. Croteau E, Bénard F, Cadorette J, Gauthier ME, Aliaga A, Bentourkia M, Lecomte R. Quantitative gated PET for the assessment of left ventricular function in small animals. J Nucl Med. 2003;44:1655–61.

    PubMed  Google Scholar 

  21. Stegger L, Heijman E, Schäfers KP, Nicolay K, Schäfers MA, Strijkers GJ. Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J Nucl Med. 2009;50:132–8.

    Article  PubMed  Google Scholar 

  22. Szymanski MK, Kruizinga S, Tio RA, et al. Use of gated 13N-NH3 micro-PET to examine left ventricular function in rats. Nucl Med Biol. 2012;39:724–9.

    Article  PubMed  CAS  Google Scholar 

  23. Florian A, Jurcut R, Ginghina C, Bogaert J. Cardiac magnetic resonance imaging in ischemic heart disease: a clinical review. J Med Life. 2011;4:330–45.

    PubMed  CAS  Google Scholar 

  24. Quarta G, Sado DM, Moon JC. Cardiomyopathies: focus on cardiovascular magnetic resonance. Br J Radiol. 2011;84:S296–305.

    Article  PubMed  Google Scholar 

  25. Stuber M, Weiss RG. Coronary magnetic resonance angiography. J Magn Reson Imaging. 2007;26:219–34.

    Article  PubMed  Google Scholar 

  26. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53:1708–15.

    Article  PubMed  Google Scholar 

  27. Gerretsen S, Kessels AG, Nelemans PJ, et al. Detection of coronary plaques using MR coronary vessel wall imaging: validation of findings with intravascular ultrasound. Eur Radiol. 2012. doi:10.1007/s00330-012-2576-1.

  28. Uppal R, Caravan P. Targeted probes for cardiovascular MRI. Future Med Chem. 2010;2:451–70.

    Article  PubMed  CAS  Google Scholar 

  29. Neubauer AM, Myerson J, Caruthers SD, et al. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging. Magn Reson Med. 2008;60:1066–72.

    Article  PubMed  CAS  Google Scholar 

  30. Kraitchman DL, Bulte JW. Imaging of stem cells using MRI. Basic Res Cardiol. 2008;103:105–13.

    Article  PubMed  CAS  Google Scholar 

  31. Hudsmith LE, Neubauer S. Detection of myocardial disorders by magnetic resonance spectroscopy. Nat Clin Pract Cardiovasc Med. 2008;5:S49–56.

    Article  PubMed  CAS  Google Scholar 

  32. Holloway C, Clarke K. Is MR spectroscopy of the heart ready for humans? Heart Lung Circ. 2010;19:154–60.

    Article  PubMed  CAS  Google Scholar 

  33. Zaidi H, Ojha N, Morich M, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  PubMed  CAS  Google Scholar 

  34. Shao Y, Cherry SR, Farahani K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997;44:1167–71.

    Article  CAS  Google Scholar 

  35. Shao Y, Cherry SR, Farahani K, et al. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–70.

    Article  PubMed  CAS  Google Scholar 

  36. Garlick PB, Marsden PK, Cave AC, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed. 1997;10:138–42.

    Article  PubMed  CAS  Google Scholar 

  37. Marsden PK, Strul D, Keevil SF, et al. Simultaneous PET and NMR. Br J Radiol. 2002;75:S53–9.

    PubMed  Google Scholar 

  38. Lucas A, Hawkes RC, Ansorge RE, et al. Development of a combined micro-PET-MR system. IEEE Nucl Sci Symp Conf Rec. 2006;2345–2348.

  39. Pichler B, Lorenz E, Mirzoyan R, Pimpl W, Roder F, Schwaiger M, Ziegler SI. Performance test of a LSO-APD PET Module in a 9.4 Tesla Magnet. IEEE Nucl Sci Symp Med Imaging Conf. 1998;1237–3129.

  40. Ziegler SI, Pichler BJ, Boening G, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med. 2001;28:136–43.

    Article  PubMed  CAS  Google Scholar 

  41. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47:1968–76.

    PubMed  Google Scholar 

  42. Judenhofer MS, Catana C, Swann BK, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7T magnet. Radiology. 2007;244:807–14.

    Article  PubMed  Google Scholar 

  43. Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.

    Article  PubMed  CAS  Google Scholar 

  44. Wu Y, Catana C, Farrell R, Dokhale PA, Shah KS, Qi J, Cherry SR. PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci. 2009;56:574–80.

    Article  PubMed  Google Scholar 

  45. Schlemmer HP, Pichler BJ, Schmand M, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248:1028–35.

    Article  PubMed  Google Scholar 

  46. • Boss A, Bisdas S, Kolb A, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51:1198–205. First clinical study with a simultaneous PET/MRI for brain tumor imaging.

    Article  PubMed  Google Scholar 

  47. Boss A, Kolb A, Hofmann M, et al. Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol. 2010;45:270–4.

    Article  PubMed  Google Scholar 

  48. Stegger L, Martirosian P, Schwenzer N, et al. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol. 2012;53:1066–72.

    Article  PubMed  Google Scholar 

  49. Boss A, Stegger L, Bisdas S, et al. Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol. 2011;21:1439–46.

    Article  PubMed  Google Scholar 

  50. • Kolb A, Wehrl HF, Hofmann M, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22:1776–88. Technical characterization of the first human brain PET/MRI system for simultaneous imaging.

    Article  PubMed  Google Scholar 

  51. • Delso G, Fürst S, Jakoby B, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22. Technical characterization of the first commercial PET/MRI system for simultaneous whole-body imaging.

    Article  PubMed  Google Scholar 

  52. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    Article  PubMed  CAS  Google Scholar 

  53. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–45.

    Article  PubMed  Google Scholar 

  54. Kramer CM, Sinusas AJ, Sosnovik DE, French BA, Bengel FM. Multimodality imaging of myocardial injury and remodeling. J Nucl Med. 2010;51 Suppl 1:107S–21S.

    Article  PubMed  Google Scholar 

  55. Shah P, Choi BG, Mazhari R. Positron emission tomography for the evaluation and treatment of cardiomyopathy. Ann N Y Acad Sci. 2011;1228:137–49.

    Article  PubMed  Google Scholar 

  56. Nunes H, Freynet O, Naggara N, et al. Cardiac sarcoidosis. Semin Respir Crit Care Med. 2010;31:428–41.

    Article  PubMed  Google Scholar 

  57. Rahbar K, Seifarth H, Schäfers M, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53:856–63.

    Article  PubMed  CAS  Google Scholar 

  58. Morton G, Chiribiri A, Ishida M, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60:1546–55.

    Article  PubMed  Google Scholar 

  59. McCommis KS, O’Connor R, Abendschein DR, Muccigrosso D, Gropler RJ, Zheng J. T(2) preparation method for measuring hyperemic myocardial O(2) consumption: in vivo validation by positron emission tomography. J Magn Reson Imaging. 2011;33:320–7.

    Article  PubMed  Google Scholar 

  60. de Haan S, Harms HJ, Lubberink M, et al. Parametric imaging of myocardial viability using 15O-labelled water and PET/CT: comparison with lategadolinium-enhanced CMR. Eur J Nucl Med Mol Imaging. 2012;39:1240–5.

    Article  PubMed  Google Scholar 

  61. • Uppal R, Catana C, Ay I, Benner T, Sorensen AG, Caravan P. Bimodal thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe—feasibility study in rat model. Radiology. 2011;258:812–20. A study showing the value of combined PET/MRI and bimodal probes for thrombus imaging.

    Article  PubMed  Google Scholar 

  62. Frullano L, Catana C, Benner T, Sherry AD, Caravan P. Bimodal MR-PET agent for quantitative pH imaging. Angew Chem Int Ed Engl. 2010;49:2382–4.

    Article  PubMed  CAS  Google Scholar 

  63. •• Büscher K, Judenhofer MS, Kuhlmann MT, et al. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med. 2010;51:1277–84. First use of simultaneous PET/MR imaging for preclinical imaging of myocardial properties.

    Article  PubMed  Google Scholar 

  64. •• Lee WW, Marinelli B, van der Laan AM, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63. Innovative use of PET/MR imaging with a mouse positioning bed and sequential imaging in the important field of ischemic heart disease.

    Article  PubMed  CAS  Google Scholar 

  65. Makowski MR, Ebersberger U, Nekolla S, Schwaiger M. In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur Heart J. 2008;29:2201.

    Article  PubMed  Google Scholar 

  66. Hiari N, Rudd JH. FDG PET imaging and cardiovascular inflammation. Curr Cardiol Rep. 2011;13:43–8.

    Article  PubMed  Google Scholar 

  67. Rogers IS, Nasir K, Figueroa AL, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–97.

    Article  PubMed  Google Scholar 

  68. Kato K, Schober O, Ikeda M, et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1622–8.

    Article  PubMed  CAS  Google Scholar 

  69. Laitinen IE, Luoto P, Någren K, et al. Uptake of 11C-choline in mouse atherosclerotic plaques. J Nucl Med. 2010;51:798–802.

    Article  PubMed  Google Scholar 

  70. Saraste A, Laitinen I, Weidl E, et al. Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol. 2012;19:775–84.

    Article  PubMed  Google Scholar 

  71. Lucignani G, Schäfers M. PET, CT and MRI characterisation of the atherosclerotic plaque. Eur J Nucl Med Mol Imaging. 2010;37:2398–402.

    Article  PubMed  Google Scholar 

  72. Abdelbaky A, Tawakol A. Noninvasive positron emission tomography imaging of coronary arterial inflammation. Curr Cardiovasc Imaging Rep. 2011;4:41–9.

    Article  PubMed  Google Scholar 

  73. Hermann S, Starsichova A, Waschkau B, Kuhlmann M, Wenning C, Schober O, Schäfers M. Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability? J Nucl Cardiol. 2012;19:609–17.

    Article  PubMed  Google Scholar 

  74. Fayad ZA, Mani V, Woodward M, et al. Rationale and design of dal-PLAQUE: a study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Am Heart J. 2011;162:214–21.

    Article  PubMed  Google Scholar 

  75. Vucic E, Calcagno C, Dickson SD, et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC Cardiovasc Imaging. 2012;5:819–28.

    Article  PubMed  Google Scholar 

  76. Tang TY, Moustafa RR, Howarth SP, et al. Combined PET-FDG and USPIO-enhanced MR imaging in patients with symptomatic moderate carotid artery stenosis. Eur J Vasc Endovasc Surg. 2008;36:53–5.

    Article  PubMed  CAS  Google Scholar 

  77. Lamare F, Ledesma Carbayo MJ, Cresson T, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol. 2007;52:5187–204.

    Article  PubMed  CAS  Google Scholar 

  78. • Tsoumpas C, Mackewn JE, Halsted P, et al. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET. Ann Nucl Med. 2010;24:745–50. Demonstration of MR-based motion correction in a phantom using a single-slice PET system inside an MRI.

    Article  PubMed  Google Scholar 

  79. • Dikaios N, Izquierdo-Garcia D, Graves MJ, Mani V, Fayad ZA, Fryer TD. MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur Radiol. 2012;22:439–46. MR-based PET motion correction approaches evaluated in a simulation of simultaneous PET/MRI acquisition.

    Article  PubMed  Google Scholar 

  80. •• Chun SY, Reese TG, Ouyang J, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53:1284–91. MR-based correction of motion in a simultaneous PET/MR system investigated in phantom and animal experiments.

    Article  PubMed  Google Scholar 

  81. •• Würslin C, Schmidt H, Martirosian P, Brendle C, Boss A, Schwenzer NF, Stegger L. Respiratory motion correction in oncological PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. Accepted for publication. Demonstration of MR-based correction of PET images for respiratory motion using simultaneous PET/MRI in a clinical setting useful for oncological but also cardiac imaging.

  82. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.

    Article  PubMed  Google Scholar 

  83. • Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke. 2009;40:86–93. An evaluation of the value of partial volume correction in plaque imaging demonstrated in coronary arteries. Combined PET/MRI may facilitate this procedure.

    Article  PubMed  Google Scholar 

  84. Eiber M, Martinez-Möller A, Souvatzoglou M, et al. Value of a Dixon-based MR/ PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38:1691–701.

    Article  PubMed  Google Scholar 

  85. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.

    Article  PubMed  Google Scholar 

  86. Hofmann M, Steinke F, Scheel V. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49:1875–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the Deutsche Forschungsgemeinschaft, SFB 656 Münster (project C6) and by the Herzzentrum Münster e.V. (travel grant).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Stegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegger, L., Schülke, C., Wenning, C. et al. Cardiac PET/MRI. Curr Cardiovasc Imaging Rep 6, 169–178 (2013). https://doi.org/10.1007/s12410-012-9189-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9189-6

Keywords

Navigation