Skip to main content

Potential Role of Cardiac PET/MRI in Cardiovascular Disease: Initial Experience

  • Chapter
Molecular and Multimodality Imaging in Cardiovascular Disease

Abstract

Hybrid PET/MR imaging using sequential and integrated scanner platforms has been available for several years, and from the beginning, expectations toward cardiovascular applications have been high. Both PET and MRI have been used in cardiovascular imaging for decades, and in recent years, MRI became a standard of reference with respect to a variety of cardiovascular diseases. Cardiac MRI allows for the detailed anatomical assessment of the cardiovascular system, quantification of cardiovascular function, and multiparametric tissue classification. PET imaging allows for the precise quantification of myocardial perfusion and coronary blood flow reserve, visualization of specific metabolic processes, as well as quantification on the molecular level. Despite a certain overlap between modalities, the excellent morphologic and functional imaging capabilities of MRI in combination with the high sensitivity and quantification capabilities of PET are poised to provide added value in a variety of cardiac diseases. The following chapter provides a summary of the current state of scientific research in cardiovascular PET/MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlosser T, Nensa F, Mahabadi AA, Poeppel TD. Hybrid MRI/PET of the heart: a new complementary imaging technique for simultaneous acquisition of MRI and PET data. Heart. 2012;5:351–2.

    Google Scholar 

  2. Ibrahim T, Nekolla SG, Langwieser N, et al. Simultaneous positron emission tomography/magnetic resonance imaging identifies sustained regional abnormalities in cardiac metabolism and function in stress-induced transient midventricular ballooning syndrome. Circulation. 2012;21:e324–6.

    Article  Google Scholar 

  3. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;3:402–15.

    Article  Google Scholar 

  4. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;22:e639–41.

    Article  Google Scholar 

  5. Nensa F, Poeppel TD, Beiderwellen K, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;2:366–73.

    Article  Google Scholar 

  6. Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Rofo. 2014;12:1094–101.

    Google Scholar 

  7. Quick HH. Integrated PET/MR. J Magn Reson Imaging. 2013;2:243–58.

    Google Scholar 

  8. Martinez-Möller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;4:520–6.

    Article  Google Scholar 

  9. Kim JH, Lee JS, Song IC, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med. 2012;12:1878–82.

    Article  Google Scholar 

  10. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;5:812–8.

    Article  Google Scholar 

  11. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B(0) homogenization using gradient enhancement (HUGE). Magn Reson Med. 2012;4:1047–57.

    Google Scholar 

  12. Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging. 2013;2:237–46.

    Article  Google Scholar 

  13. Heusch P, Buchbender C, Beiderwellen K, et al. Standardized uptake values for [18F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol. 2013;5:870–6.

    Article  Google Scholar 

  14. Lau JMC, Laforest R, Sharma S, et al. Feasibility of MRI attenuation correction in cardiac-gated FDG-PET. Paper presented at the ISMRM 21st Annual Meeting & Exhibition, Salt Lake City; 2013.

    Google Scholar 

  15. Nensa F, Tezgah E, and Poeppel TD, et al. Integrated FDG-PET/MRI for the assessment of myocardial salvage in reperfused acute myocardial infarction. Radiology. 2015 Apr 3:140564. [Epub ahead of print]. See http://www.ncbi.nlm.nih.gov/pubmed/25848898.

  16. Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;19:1719–28.

    Article  Google Scholar 

  17. Zhang HS, Rischpler C, Langwieser N, et al. Simultaneous measurement of myocardial perfusion by dynamic contrast enhancement MR and ammonia PET. Paper presented at the ISMRM 21st Annual Meeting & Exhibition, Salt Lake City; 2013.

    Google Scholar 

  18. Lau JMC, Laforest R, Zheng J, et al. 13N-Ammonia PET/MR myocardial stress perfusion imaging early experience. Paper presented at the SNMMI 2014 Annual Meeting, St. Louis; 2014.

    Google Scholar 

  19. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol. 2009;17:1475–87.

    Article  Google Scholar 

  20. Erba PA, Sollini M, Lazzeri E, Mariani G. FDG-PET in cardiac infections. Semin Nucl Med. 2013;5:377–95.

    Article  Google Scholar 

  21. Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;5:926–36.

    Article  Google Scholar 

  22. Ito K, Morooka M, Okazaki O, Minaminoto R, Kubota K, Hiroe M. Efficacy of heparin loading during an 18F-FDG PET/CT examination to search for cardiac sarcoidosis activity. Clin Nucl Med. 2013;2:128–30.

    Article  Google Scholar 

  23. Morooka M, Moroi M, Uno K, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;1:1.

    Article  Google Scholar 

  24. Nensa F, Poeppel TD, Krings P, Schlosser T. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;35(32):2173.

    Article  PubMed  Google Scholar 

  25. Olshausen GV, Hyafil F, Langwieser N, Laugwitz K-L, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose–positron emission tomography/magnetic resonance imaging. Circulation. 2014;11:925–6.

    Article  Google Scholar 

  26. O’Meara C, Menezes LJ, White SK, Wicks E, Elliott P. Initial experience of imaging cardiac sarcoidosis using hybrid PET-MR – a technologist’s case study. J Cardiovasc Magn Reson. 2013;15 Suppl 1:T1.

    PubMed Central  Google Scholar 

  27. Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;5:312.

    Article  Google Scholar 

  28. Wicks E, Menezes L, Pantazis A, et al. Novel hybrid positron emission tomography – magnetic resonance (PET-MR) multi-modality inflammatory imaging has improved diagnostic accuracy for detecting cardiac sarcoidosis. Heart. 2014;100 Suppl 3:A80.

    Article  Google Scholar 

  29. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;4:501–11.

    Article  Google Scholar 

  30. Carbone I, Friedrich MG. Myocardial edema imaging by cardiovascular magnetic resonance: current status and future potential. Curr Cardiol Rep. 2012;1:1–6.

    Article  Google Scholar 

  31. Sobic-Saranovic DP, Grozdic IT, Videnovic-Ivanov J, et al. Responsiveness of FDG PET/CT to treatment of patients with active chronic sarcoidosis. Clin Nucl Med. 2013;7:516–21.

    Article  Google Scholar 

  32. Nensa F, Tezgah E, Poeppel TD, Nassenstein K, Schlosser T. Diagnosis and treatment response evaluation of cardiac sarcoidosis using PET/MRI. Eur Heart J. 2015;36(9):550.

    Article  PubMed  Google Scholar 

  33. Langwieser N, von Olshausen G, Rischpler C, Ibrahim T. Confirmation of diagnosis and graduation of inflammatory activity of Loeffler endocarditis by hybrid positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;36:2496.

    Article  Google Scholar 

  34. Probst S, Seltzer A, Spieler B, Chachoua A, Friedman K. The appearance of cardiac metastasis from squamous cell carcinoma of the lung on F-18 FDG PET/CT and post hoc PET/MRI. Clin Nucl Med. 2011;4:311–2.

    Article  Google Scholar 

  35. Nensa F, Tezgah E, Poeppel TD, et al. Integrated 18F-FDG-PET/MRI in the assessment of cardiac masses: a pilot study. J Nucl Med. 2015;56(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann U, Globits S, Schima W, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;7:890–5.

    Article  Google Scholar 

  37. Rahbar K, Seifarth H, Schäfers M, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;6:856–63.

    Article  Google Scholar 

  38. Kong E-J, Lee S-H, Cho I-H. Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR. Nucl Med Mol Imaging. 2013;3:196–200.

    Article  Google Scholar 

  39. Handa N, Magata Y, Mukai T, Nishina T, Konishi J, Komeda M. Quantitative FDG-uptake by positron emission tomography in progressive hypertrophy of rat hearts in vivo. Ann Nucl Med. 2007;10:569–76.

    Article  Google Scholar 

  40. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;23:2708–11.

    Article  Google Scholar 

  41. Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;9:1825–31.

    Article  Google Scholar 

  42. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2013;9918:705–13.

    Google Scholar 

  43. Hermann S, Starsichova A, Waschkau B, et al. Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability? J Nucl Cardiol. 2012;3:609–17.

    Article  Google Scholar 

  44. Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology. 2001;2:285–99.

    Article  Google Scholar 

  45. Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007;1:64–77.

    Article  Google Scholar 

  46. Ripa RS, Knudsen A, Hag AM, et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;4:361–71.

    Google Scholar 

  47. Pedersen SF, Ludvigsen TP, Johannesen HH, et al. Feasibility of simultaneous PET/MR in diet-induced atherosclerotic minipig: a pilot study for translational imaging. Am J Nucl Med Mol Imaging. 2014;5:448–58.

    Google Scholar 

  48. Schneeweis C, Schnackenburg B, Stuber M, et al. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis. PLoS One. 2012;12, e50655.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Nensa MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nensa, F., Poeppel, T.D., Schlosser, T. (2015). Potential Role of Cardiac PET/MRI in Cardiovascular Disease: Initial Experience. In: Schindler, T., George, R., Lima, J. (eds) Molecular and Multimodality Imaging in Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-19611-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19611-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19610-7

  • Online ISBN: 978-3-319-19611-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics