Skip to main content

Advertisement

Log in

Comparison of MR and CT for the Assessment of the Significance of Coronary Artery Disease: a Review

  • Cardiac Magnetic Resonance (E Nagel, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Multidetector computed tomography (MDCT) and cardiac magnetic resonance (CMR) are advanced, state-of-the-art imaging tools for detection of coronary artery disease (CAD), providing important complementary information in patients with suspected or established disease. While MDCT coronary angiography is an anatomical method and seems to be especially prepared for CAD detection, even in subclinical phases, CMR allows evaluation of ischemia and myocardial scar and is particularly efficient in the assessment of the functional significance of CAD and in guiding management. Over the last years, research focused on the development of anatomical and functional integrated techniques using both methods. While CMR coronary angiography is slowly but steadily developing, MDCT myocardial perfusion and MDCT virtual fractional flow reserve estimation are promising tools that may change the way noninvasive assessment of CAD is made in the near future. This review article focuses on CMR and MDCT ability for assessing CAD significance, taking into account the relevant research published in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of major importance

  1. Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104(22):2746–753.

    Google Scholar 

  2. Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J. 2003;24(1):28–66.

    Article  PubMed  Google Scholar 

  3. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004;44(3):E1–211.

    Article  PubMed  Google Scholar 

  4. Achenbach S, Dilsizian V, Kramer CM, Zoghbi WA. The year in coronary artery disease. JACC Cardiovasc Imaging. 2009;2(6):774–86.

    Article  PubMed  Google Scholar 

  5. Kantor B, Nagel E, Schoenhagen P, Barkhausen J, Gerber TC. Coronary computed tomography and magnetic resonance imaging. Curr Probl Cardiol. 2009;34(4):145–217.

    Article  PubMed  Google Scholar 

  6. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Google Scholar 

  7. Shaw LJ, Berman DS, Maron DJ, Mancini GBJ, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.

    Article  PubMed  Google Scholar 

  8. Tonino PAL, de Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van' t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  PubMed  CAS  Google Scholar 

  9. Schuijf JD, Bax JJ, Shaw LJ, de Roos A, Lamb HJ, van der Wall EE, et al. Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J. 2006;151(2):404–11.

    Article  PubMed  Google Scholar 

  10. Scheffel H, Stolzmann P, Alkadhi H, Azemaj N, Plass A, Baumueller S, et al. Low-dose CT and cardiac MR for the diagnosis of coronary artery disease: accuracy of single and combined approaches. Int J Cardiovasc Imaging. 2010;26(5):579–90.

    Article  PubMed  Google Scholar 

  11. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech J-W, van't Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  12. Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease. JAC. 2011;56(3):177–84.

    Google Scholar 

  13. Balachandran KP, Berry C, Norrie J, Vallance BD, Malekianpour M, Gilbert TJ, et al. Relation between coronary pressure derived collateral flow, myocardial perfusion grade, and outcome in left ventricular function after rescue percutaneous coronary intervention. Heart. 2004;90(12):1450–4.

    Article  PubMed  CAS  Google Scholar 

  14. Pijls NH, de Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, Koolen JJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55(3):173–85.

    Article  PubMed  Google Scholar 

  16. Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Investigative Radiology. 2010;45(6):306–13.

    PubMed  CAS  Google Scholar 

  17. Weininger M, Schoepf UJ, Ramachandra A, Fink C, Rowe GW, Costello P, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81(12):3703–10.

    Article  PubMed  Google Scholar 

  18. Ko SM, Choi JW, Song MG, Shin JK, Chee HK, Chung HW, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21(1):26–35.

    Article  PubMed  Google Scholar 

  19. Feuchtner G, Goetti R, Plass A, Wieser M, Scheffel H, Wyss C, et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ: Cardiovasc Imaging. 2011;4(5):540–9.

    Article  Google Scholar 

  20. Tashakkor AY, Nicolaou S, Leipsic J, Mancini GBJ. The emerging role of cardiac computed tomography for the assessment of coronary perfusion: a systematic review and meta-analysis. The Canadian Journal of Cardiology. 2012;28(4):413–22.

    Google Scholar 

  21. Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32(7):855–97.

    Article  PubMed  CAS  Google Scholar 

  22. Schuster A, Morton G, Chiribiri A, Perera D, Vanoverschelde J-L, Nagel E. Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. J Am Coll Cardiol. 2012;59(4):359–70.

    Article  PubMed  Google Scholar 

  23. Morton G, Schuster A, Perera D, Nagel E. Cardiac magnetic resonance imaging to guide complex revascularization in stable coronary artery disease. Eur Heart J. 2010;31(18):2209–15.

    Article  PubMed  Google Scholar 

  24. Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47(7):1427–32.

    Article  PubMed  Google Scholar 

  25. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115(13):1769–76.

    Article  PubMed  Google Scholar 

  26. Doesch C, Seeger A, Doering J, Herdeg C, Burgstahler C, Claussen CD, et al. Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. J Am Coll Cardiol Cardiovasc Imaging. 2009;2(4):424.

    Article  Google Scholar 

  27. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.

    Article  PubMed  CAS  Google Scholar 

  28. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50(14):1343–53.

    Article  PubMed  Google Scholar 

  29. Bettencourt N, Chiribiri A, Schuster A, Nagel E. Assessment of myocardial ischemia and viability using cardiac magnetic resonance. Curr Heart Fail Rep. 2009;6(3):142–53.

    Article  PubMed  Google Scholar 

  30. Klem I, Heitner JF, Shah DJ, Sketch MH, Behar V, Weinsaft J, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006;47(8):1630–8.

    Article  PubMed  Google Scholar 

  31. Husser O, Bodí V, Sanchís J, Mainar L, Núñez J, López-Lereu MP, et al. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease. Rev Esp Cardiol. 2009;62(4):383–91.

    Article  PubMed  Google Scholar 

  32. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108(4):432–7.

    Article  PubMed  Google Scholar 

  33. Lee DC, Simonetti OP, Harris KR, Holly TA, Judd RM, Wu E, et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation. 2004;110(1):58–65.

    Article  PubMed  Google Scholar 

  34. Hamon M, Fau G, Née G, Ehtisham J, Morello R, Hamon M. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2010;12(1):29.

    Article  Google Scholar 

  35. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28.

    Article  PubMed  Google Scholar 

  36. de Jong MC, Genders TSS, van Geuns R-J, Moelker A, Hunink MGM. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95.

    Article  PubMed  Google Scholar 

  37. •• Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60. This recent paper is the largest randomized study published so far comparing a comprehensive CMR-MPI protocol against SPECT for detection of significant coronary disease, as assessed by invasive x-ray coronary angiography (CE-MARC).

    Article  PubMed  Google Scholar 

  38. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29(4):480–9.

    Article  PubMed  Google Scholar 

  39. •• Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J [serial on the Internet]. Available from: http://eurheartj.oxfordjournals.org/content/early/2012/03/04/eurheartj.ehs022.abstract. This recently published multicenter multivendor randomized trial (MR-IMPACT II) compared isolated CMR-MPI against SPECT for the detection of significant coronary disease, as assessed by invasive x-ray coronary angiography. The primary end-point results are presented in this paper.

  40. •• Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2012;14(1):61. The secondary endpoints of MR-IMPACT II, a multicenter multivendor randomized trial comparing isolated CMR-MPI against SPECT for the detection of significant coronary disease, are published in this paper.

    Article  Google Scholar 

  41. Futamatsu H, Klassen C, Pilla M, Wilke N, Angiolillo DJ, Smalheiser S, et al. Diagnostic accuracy of quantitative cardiac MRI evaluation compared to stress single-photon-emission computed tomography. Int J Cardiovasc Imaging. 2008;24(3):293–9.

    Article  PubMed  Google Scholar 

  42. Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic Coronary Artery Disease as Measured by Coronary Angiography and Fractional Flow Reserve. J Am Coll Cardiol. 2007;50(6):514–22.

    Article  PubMed  Google Scholar 

  43. Kühl HP, Katoh M, Buhr C, Krombach GA, Hoffmann R, Rassaf T, et al. Comparison of magnetic resonance perfusion imaging versus invasive fractional flow reserve for assessment of the hemodynamic significance of epicardial coronary artery stenosis. Am J Cardiol. 2007;99(8):1090–5.

    Article  PubMed  Google Scholar 

  44. Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006;27(12):1465–71.

    Article  PubMed  Google Scholar 

  45. Watkins S, Mcgeoch R, Lyne J, Steedman T, Good R, Mclaughlin M-J, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207–13.

    Article  PubMed  Google Scholar 

  46. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Duarte R, et al. Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: A prospective study. Int J Cardiol [serial on the Internet]. 2012: Available from: http://linkinghub.elsevier.com/retrieve/pii/S016752731201354X?showall=true.

  47. Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, et al. Whole-heart dynamic three- dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J. 2012;33(16):2016–24.

    Article  PubMed  Google Scholar 

  48. Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, et al. Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol. 2012;60(8):756–65.

    Article  PubMed  Google Scholar 

  49. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57(1):70–5.

    Article  PubMed  Google Scholar 

  50. Bernhardt P, Walcher T, Rottbauer W, Wöhrle J. Quantification of myocardial perfusion reserve at 1.5 and 3.0 Tesla: a comparison to fractional flow reserve. The International Journal of Cardiovascular Imaging. 2012;28(8):2049–56.

    Article  PubMed  Google Scholar 

  51. Hussain ST, Paul M, Plein S, Shah AM, McCann G, Marber MS, et al. Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. Journal of cardiovascular magnetic resonance. 2012;14(1):65.

    Google Scholar 

  52. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  53. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  PubMed  CAS  Google Scholar 

  54. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J. 2007;28(24):3042–50.

    Article  PubMed  Google Scholar 

  55. Janne d’Othée B, Siebert U, Cury R, Jadvar H, Dunn EJ, Hoffmann U. A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol. 2008;65(3):449–61.

    Article  PubMed  Google Scholar 

  56. Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2663–99.

    Article  PubMed  Google Scholar 

  57. Choi E-K, Choi SI, Rivera JJ, Nasir K, Chang S-A, Chun EJ, et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52(5):357–65.

    Article  PubMed  Google Scholar 

  58. Gaemperli O, Valenta I, Schepis T, Husmann L, Scheffel H, Desbiolles L, et al. Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease. Eur Radiol. 2008;18(6):1162–73.

    Article  PubMed  Google Scholar 

  59. van Werkhoven JM, Schuijf JD, Jukema JW, Pundziute G, de Roos A, Schalij MJ, et al. Comparison of non-invasive multi-slice computed tomography coronary angiography versus invasive coronary angiography and fractional flow reserve for the evaluation of men with known coronary artery disease. Am J Cardiol. 2009;104(5):653–6.

    Article  PubMed  Google Scholar 

  60. Tamarappoo B, Hachamovitch R. Myocardial perfusion imaging vs CT coronary angiography: when to use which? J Nucl Med. 2011;52(7):1079–86.

    Article  PubMed  Google Scholar 

  61. Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48(12):2508–14.

    Article  PubMed  Google Scholar 

  62. van Werkhoven JM, Schuijf JD, Bax JJ. Myocardial perfusion imaging to assess ischemia using multislice computed tomography. Expert Rev Cardiovasc Ther. 2009;7(1):49–56.

    Article  PubMed  Google Scholar 

  63. Gaemperli O, Schepis T, Koepfli P, Valenta I, Soyka J, Leschka S, et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2007;34(8):1162–71.

    Article  PubMed  Google Scholar 

  64. Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636–43.

    Article  PubMed  Google Scholar 

  65. de Graaf FR, Schuijf JD, Delgado V, van Velzen JE, Kroft LJ, de Roos A, et al. Clinical application of CT coronary angiography: state of the art. Heart, Lung Circ. 2010;19(3):107–16.

    Article  Google Scholar 

  66. Di Carli MF, Dorbala S, Curillova Z, Kwong RJ, Goldhaber SZ, Rybicki FJ, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol: Off Publ Am Soc Nucl Cardiol. 2007;14(6):799–809.

    Article  Google Scholar 

  67. Gaemperli O, Schepis T, Valenta I, Koepfli P, Husmann L, Scheffel H, et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology. 2008;248(2):414–23.

    Article  PubMed  Google Scholar 

  68. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation. 2006;113(6):823–33.

    Article  PubMed  Google Scholar 

  69. George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JAC, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol. 2007;42(12):815–22.

    Article  PubMed  Google Scholar 

  70. Scanlan JG, Gustafson DE, Chevalier PA, Robb RA, Ritman EL. Evaluation of ischemic heart disease with a prototype volume imaging computed tomographic (CT) scanner: preliminary experiments. Am J Cardiol. 1980;46(7):1263–8.

    Article  PubMed  CAS  Google Scholar 

  71. George RT, Silva C, Cordeiro MAS, DiPaula A, Thompson DR, McCarthy WF, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol. 2006;48(1):153–60.

    Article  PubMed  Google Scholar 

  72. Bamberg F, Becker A, Schwarz F, Marcus RP, Greif M, von Ziegler F, et al. Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology. 2011;260(3):689–98.

    Article  PubMed  Google Scholar 

  73. Vavere AL, Simon GG, George RT, Rochitte CE, Arai AE, Miller JM, et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study. J Cardiovasc Comput Tomogr. 2011;5(6):370–81.

    Article  PubMed  Google Scholar 

  74. George RT, Arbab-Zadeh A, Cerci RJ, Vavere AL, Kitagawa K, Dewey M, et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol. 2011;197(4):829–37.

    Article  PubMed  Google Scholar 

  75. Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J. 2005;69(5):550–7.

    Article  PubMed  Google Scholar 

  76. Kido T, Kurata A, Higashino H, Inoue Y, Kanza RE, Okayama H, et al. Quantification of regional myocardial blood flow using first-pass multidetector-row computed tomography and adenosine triphosphate in coronary artery disease. Circ J. 2008;72(7):1086–91.

    Article  PubMed  Google Scholar 

  77. George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang H-J, Bluemke DA, et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ: Cardiovasc Imaging. 2009;2(3):174–82.

    Article  Google Scholar 

  78. Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54(12):1072–84.

    Article  PubMed  Google Scholar 

  79. Rocha-Filho JA, Blankstein R, Shturman LD, Bezerra HG, Okada DR, Rogers IS, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254(2):410–9.

    Article  PubMed  Google Scholar 

  80. Ho K-T, Chua K-C, Klotz E, Panknin C. Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging. 2010;3(8):811–20.

    Article  PubMed  Google Scholar 

  81. Cury RC, Magalhães TA, Borges AC, Shiozaki AA, Lemos PA, Júnior JS, et al. Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol. 2010;106(3):310–5.

    Article  PubMed  Google Scholar 

  82. Hosokawa K, Kurata A, Kido T, Shikata F, Imagawa H, Kawachi K, et al. Transmural perfusion gradient in adenosine triphosphate stress myocardial perfusion computed tomography. Circ J. 2011;75(8):1905–12.

    Article  PubMed  Google Scholar 

  83. Bettencourt N, Rocha J, Ferreira N, Pires-Morais G, Carvalho M, Leite D, et al. Incremental value of an integrated adenosine stress-rest MDCT perfusion protocol for detection of obstructive coronary artery disease. J Cardiovasc Comput Tomogr. 2011;5(6):392–405.

    Article  PubMed  Google Scholar 

  84. Magalhães TA, Cury RC, Pereira AC, Moreira VM, Lemos PA, Kalil-Filho R, et al. Additional value of dipyridamole stress myocardial perfusion by 64-row computed tomography in patients with coronary stents. J Cardiovasc Comput Tomogr. 2011;5(6):449–58.

    Article  PubMed  Google Scholar 

  85. Wang Y, Qin L, Shi X, Zeng Y, Jing H, Schoepf UJ, et al. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012;198(3):521–9.

    Article  PubMed  Google Scholar 

  86. Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomical and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR American Journal of Roentgenology. 2012;198(3):512–20.

    Article  PubMed  Google Scholar 

  87. So A, Wisenberg G, Islam A, Amann J, Romano W, Brown J, et al. Non-invasive assessment of functionally relevant coronary artery stenoses with quantitative CT perfusion: preliminary clinical experiences. Eur Radiol. 2012;22(1):39–50.

    Article  PubMed  Google Scholar 

  88. Ko BS, Cameron JD, Meredith IT, Leung M, Antonis PR, Nasis A, et al. Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J. 2012;33(1):67–77.

    Article  PubMed  Google Scholar 

  89. Ko BS, Cameron JD, Leung M, Meredith IT, Leong DP, Antonis PR, et al. Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging. 2012;5(11):1097–111.

    Article  PubMed  Google Scholar 

  90. Meijs MFL, Cramer MJ, El Aidi H, Doevendans PA. CT fractional flow reserve: the next level in noninvasive cardiac imaging. Neth Heart J. 2012;20(10):410–8.

    Article  PubMed  CAS  Google Scholar 

  91. • Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97. This paper is the first multicenter study validating CT-derived noninvasive fractional flow-reserve (CT-FFR) for evaluation of the functional significance of coronary artery disease, as assessed by invasive fractional flow reserve.

    Article  PubMed  Google Scholar 

  92. Min JK, Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, et al. Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. J Cardiovasc Comput Tomogr. 2012;6(3):191–9.

    Article  PubMed  Google Scholar 

  93. • Min JK, Leipsic J, Pencina MJ, Berman DS, Koo B-K, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45. This very recent paper describes the results of the multicenter trial DISCOVER-FLOW testing the additive value of CT-derived “virtual” fractional flow-reserve (CT-FFR) to isolated CT coronary angiography for the assessment of the functional significance of coronary stenosis, having invasive fractional flow reserve as reference standard.

    PubMed  CAS  Google Scholar 

  94. Pijls NHJ, Sels J-WEM. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59(12):1045–57.

    Article  PubMed  Google Scholar 

  95. Patel MR. Detecting obstructive coronary disease with CT angiography and noninvasive fractional flow reserve. JAMA. 2012;308(12):1269–70.

    PubMed  CAS  Google Scholar 

  96. Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229(1):209–16.

    Article  PubMed  Google Scholar 

  97. Doyle M, Fuisz A, Kortright E, Biederman RW, Walsh EG, Martin ET, et al. The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2003;5(3):475–85.

    Article  Google Scholar 

  98. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;44(11):2173–81.

    Article  PubMed  Google Scholar 

  99. Takase B, Nagata M, Kihara T, Kameyawa A, Noya K, Matsui T, et al. Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease. Jpn Heart J. 2004;45(3):475–86.

    Article  PubMed  Google Scholar 

  100. Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, et al. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation. 2004;110(6):732–7.

    Article  PubMed  CAS  Google Scholar 

  101. Giang TH, Nanz D, Coulden R, Friedrich M, Graves M, Al-Saadi N, et al. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J. 2004;25(18):1657–65.

    Article  PubMed  CAS  Google Scholar 

  102. Kawase Y, Nishimoto M, Hato K, Okajima K, Yoshikawa J. Assessment of coronary artery disease with nicorandil stress magnetic resonance imaging. Osaka City Med J. 2004;50(2):87–94.

    PubMed  Google Scholar 

  103. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110(7):835–42.

    Article  PubMed  CAS  Google Scholar 

  104. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, et al. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology. 2005;235(2):423–30.

    Article  PubMed  Google Scholar 

  105. Pilz G, Bernhardt P, Klos M, Ali E, Wild M, Höfling B. Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper prior to invasive examination in patients with AHA/ACC class II indication for coronary angiography. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2006;95:531–8.

    Article  Google Scholar 

  106. Cury RC, Cattani CA, Gabure LA, Racy DJ, de Gois JM, Siebert U, et al. Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology. 2006;240(1):39–45.

    Article  PubMed  Google Scholar 

  107. Cheng ASH, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, et al. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol. 2007;49(25):2440–9.

    Article  PubMed  Google Scholar 

  108. Gebker R, Jahnke C, Paetsch I, Schnackenburg B, Kozerke S, Bornstedt A, et al. MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique: feasibility study. Radiology. 2007;245(3):863–71.

    Article  PubMed  Google Scholar 

  109. Merkle N, Wöhrle J, Grebe O, Nusser T, Kunze M, Kestler HA, et al. Assessment of myocardial perfusion for detection of coronary artery stenoses by steady-state, free-precession magnetic resonance first-pass imaging. Heart. 2007;93(11):1381–5.

    Article  PubMed  Google Scholar 

  110. Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, et al. Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. Radiology. 2008;247(1):57–63.

    Article  PubMed  Google Scholar 

  111. Kitagawa K, Sakuma H, Nagata M, Okuda S, Hirano M, Tanimoto A, et al. Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium-enhanced MRI for detecting flow-limiting coronary artery disease: a multicenter study. Eur Radiol. 2008;18(12):2808–16.

    Article  PubMed  Google Scholar 

  112. Klein C, Gebker R, Kokocinski T, Dreysse S, Schnackenburg B, Fleck E, et al. Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2008;10(1):45.

    Article  Google Scholar 

  113. Meyer C, Strach K, Thomas D, Litt H, Nähle CP, Tiemann K, et al. High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease. Eur Radiol. 2008;18(2):226–33.

    Article  PubMed  Google Scholar 

  114. Pingitore A, Lombardi M, Scattini B, De Marchi D, Aquaro GD, Positano V, et al. Head to head comparison between perfusion and function during accelerated high-dose dipyridamole magnetic resonance stress for the detection of coronary artery disease. Am J Cardiol. 2008;101(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  115. Plein S, Kozerke S, Suerder D, Luescher TF, Greenwood JP, Boesiger P, et al. High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J. 2008;29(17):2148–55.

    Article  PubMed  Google Scholar 

  116. Plein S, Schwitter J, Suerder D, Greenwood JP, Boesiger P, Kozerke S. k-Space and time sensitivity encoding-accelerated myocardial perfusion MR imaging at 3.0 T: comparison with 1.5 T. Radiology. 2008;249(2):493–500.

    Article  PubMed  Google Scholar 

  117. Bernhardt P, Spiess J, Levenson B, Pilz G, Höfling B, Hombach V, et al. Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol. JACC Cardiovasc Imaging. 2009;2(11):1292–300.

    Article  PubMed  Google Scholar 

  118. Klein C, Nagel E, Gebker R, Kelle S, Schnackenburg B, Graf K, et al. Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery. J Am Coll Cardiol Cardiovasc Imaging. 2009;2(4):437.

    Article  Google Scholar 

  119. Krittayaphong R, Boonyasirinant T, Saiviroonporn P, Nakyen S, Thanapiboonpol P, Yindeengam A, et al. Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images? Int J Cardiovasc Imaging. 2009;25 Suppl 1:139–48.

    Article  PubMed  Google Scholar 

  120. Arnold JR, Karamitsos TD, Pegg TJ, Francis JM, Olszewski R, Searle N, et al. Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: a comparison with coronary angiography and cardiac magnetic resonance. JACC Cardiovasc Imaging. 2010;3(9):934–43.

    Article  PubMed  Google Scholar 

  121. Donati OF, Scheffel H, Stolzmann P, Baumüller S, Plass A, Leschka S, et al. Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses. AJR Am J Roentgenol. 2010;194(4):920–6.

    Article  PubMed  Google Scholar 

  122. Klumpp BD, Seeger A, Doesch C, Doering J, Hoevelborn T, Kramer U, et al. High resolution myocardial magnetic resonance stress perfusion imaging at 3 T using a 1 M contrast agent. Eur Radiol. 2010;20(3):533–41.

    Article  PubMed  Google Scholar 

  123. Stolzmann P, Alkadhi H, Scheffel H, Plass A, Leschka S, Falk V, et al. Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease? The Int J Cardiovasc Imaging. 2011;27(7):969–77.

    Article  Google Scholar 

  124. de Mello R, Nacif M, dos Santos A, Cury R, Rochitte C, Marchiori E. Diagnostic performance of combined cardiac MRI for detection of coronary artery disease. Eur J Radiol. 2012;81(8):1782–9.

    Article  PubMed  Google Scholar 

  125. Gebker R, Jahnke C, Manka R, Frick M, Hucko T, Kozerke S, et al. High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k-t SENSE. Int J Cardiol. 2012;158(3):411–6.

    Article  PubMed  CAS  Google Scholar 

  126. Futamatsu H, Wilke N, Klassen C, Shoemaker S, Angiolillo DJ, Siuciak A, et al. Evaluation of cardiac magnetic resonance imaging parameters to detect anatomically and hemodynamically significant coronary artery disease. Am Heart J. 2007;154(2):298–305.

    Article  PubMed  Google Scholar 

  127. Kirschbaum SW, Springeling T, Rossi A, Duckers E, Gutiérrez-Chico JL, Regar E, et al. Comparison of adenosine magnetic resonance perfusion imaging with invasive coronary flow reserve and fractional flow reserve in patients with suspected coronary artery disease. Int J Cardiol. 2011;147(1):184–6.

    Article  PubMed  Google Scholar 

  128. Okada DR, Ghoshhajra BB, Blankstein R, Rocha-Filho JA, Shturman LD, Rogers IS, et al. Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT. J Nucl Cardiol: Off Publ Am Soc Nucl Cardiol. 2010;17(1):27–37.

    Article  Google Scholar 

  129. Tamarappoo BK, Dey D, Nakazato R, Shmilovich H, Smith T, Cheng VY, et al. Comparison of the extent and severity of myocardial perfusion defects measured by CT coronary angiography and SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging. 2010;3(10):1010–9.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Bettencourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettencourt, N., Nagel, E. Comparison of MR and CT for the Assessment of the Significance of Coronary Artery Disease: a Review. Curr Cardiovasc Imaging Rep 6, 102–116 (2013). https://doi.org/10.1007/s12410-012-9186-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9186-9

Keywords

Navigation