Skip to main content
Log in

High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To implement a high-resolution first-pass myocardial perfusion imaging protocol (HRPI) at 3 T, and to evaluate the feasibility, image quality and accuracy of this approach prospectively in patients with suspected CAD. We hypothesized that utilizing the gain in SNR at 3 T to increase spatial resolution would reduce partial volume effects and subendocardial dark rim artifacts in comparison to 1.5 T. HRPI studies were performed on 60 patients using a segmented k-space gradient echo sequence (in plane resolution 1.97 × 1.94 mm2). Semiquantitative assessment of dark rim artifacts was performed for the stress studies on a slice-by-slice basis. Qualitative visual analysis was compared to quantitative coronary angiography (QCA) results; hemodynamically significant CAD was defined as stenosis ≥70% at QCA. Dark rim artifacts appeared in 108 of 180 slices (average extent 1.3 ± 1.2 mm representing 11.8 ± 10.8% of the transmural myocardial thickness). Sensitivity, specifity, and test accuracy for the detection of significant CAD were 89%,79%, and 85%. HRPI studies at 3 T are feasible in a clinical setting, providing good image quality and high accuracy for detection of significant CAD. The presence of dark rim artifacts does not appear to represent a diagnostic problem when using a HRPI approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 tesla clinical whole body systems. Invest Radiol 38:436–442

    Article  PubMed  Google Scholar 

  2. Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 17:648–655

    Article  PubMed  Google Scholar 

  3. Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982

    Article  PubMed  CAS  Google Scholar 

  4. Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725

    Article  PubMed  Google Scholar 

  5. Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71

    Article  PubMed  CAS  Google Scholar 

  6. Araoz PA, Glockner JF, McGee KP, Potter DD Jr, Valeti VU, Stanley DW et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7:559–564

    Article  PubMed  Google Scholar 

  7. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Int J Cardiovasc Imaging 18:539–542

    PubMed  Google Scholar 

  8. al-Saadi N, Gross M, Bornstedt A, Schnackenburg B, Klein C, Fleck E et al (2001) [Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography]. Z Kardiol 90:824–834

    Article  PubMed  CAS  Google Scholar 

  9. Barkhausen J, Hunold P, Jochims M, Debatin JF (2004) Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging 19:750–757

    Article  PubMed  Google Scholar 

  10. Storey P, Chen Q, Li W, Edelman RR, Prasad PV (2002) Band artifacts due to bulk motion. Magn Reson Med 48:1028–1036

    Article  PubMed  Google Scholar 

  11. Salerno M, Rehwald WG, Judd RM, Kim RJ (2007) Simulation of banding artifacts resulting from realistic cardiac motion during single shot myocardial perfusion. J Cardiovasc Magn Res 9:246–247

    Google Scholar 

  12. Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299

    Article  PubMed  Google Scholar 

  13. Strach K, Meyer C, Thomas D, Naehle CP, Schmitz C, Litt H et al (2007) High-resolution myocardial perfusion imaging at 3 T: comparison to 1.5 T in healthy volunteers. Eur Radiol 17(7):1829–1835

    Article  PubMed  CAS  Google Scholar 

  14. Hunold P, Schlosser T, Barkhausen J (2006) Magnetic resonance cardiac perfusion imaging-a clinical perspective. Eur Radiol 16:1779–1788

    Article  PubMed  Google Scholar 

  15. Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  16. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  17. Paetsch I, Foll D, Langreck H, Herkommer B, Klein C, Schalla S et al (2004) Myocardial perfusion imaging using OMNISCAN: a dose finding study for visual assessment of stress-induced regional perfusion abnormalities. J Cardiovasc Magn Reson 6:803–809

    Article  PubMed  Google Scholar 

  18. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842

    Article  PubMed  CAS  Google Scholar 

  19. Sensky PR, Samani NJ, Reek C, Cherryman GR (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 18:373–383; discussion 85–6

    Article  PubMed  Google Scholar 

  20. Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW et al (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110:732–737

    Article  PubMed  CAS  Google Scholar 

  21. Elkington AG, Gatehouse PD, Cannell TM, Moon JC, Prasad SK, Firmin DN et al (2005) Comparison of hybrid echo-planar imaging and FLASH myocardial perfusion cardiovascular MR imaging. Radiology 235:237–243

    Article  PubMed  Google Scholar 

  22. Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 14:409–416

    Article  PubMed  Google Scholar 

  23. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG et al (2005) Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235:423–430

    Article  PubMed  Google Scholar 

  24. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    PubMed  CAS  Google Scholar 

  25. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  26. Kim D, Axel L (2006) Multislice, dual-imaging sequence for increasing the dynamic range of the contrast-enhanced blood signal and CNR of myocardial enhancement at 3 T. J Magn Reson Imaging 23:81–86

    Article  PubMed  Google Scholar 

  27. Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G et al (2003) Practical consideration for 3-T imaging. Magn Reson Imaging Clin N Am 11:615–639, vi

    Article  PubMed  Google Scholar 

  28. Pattany PM (2004) 3-T MR imaging: the pros and cons. AJNR Am J Neuroradiol 25:1455–1456

    PubMed  Google Scholar 

  29. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  CAS  Google Scholar 

  30. Wang Y, Moin K, Akinboboye O, Reichek N (2005) Myocardial first pass perfusion: steady-state free precession versus spoiled gradient echo and segmented echo planar imaging. Magn Reson Med 54:1123–1129

    Article  PubMed  Google Scholar 

  31. Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 tesla. Magn Reson Med 51:799–806

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Strach, K., Thomas, D. et al. High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease. Eur Radiol 18, 226–233 (2008). https://doi.org/10.1007/s00330-007-0746-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0746-3

Keywords

Navigation