Skip to main content

Advertisement

Log in

Left-Ventricular Function Quantitative Parameters and Their Relationship to Acute Loading Variation: From Physiology to Clinical Practice

  • Cardiac Magnetic Resonance (E Nagel, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Because of its relevance for patient prognosis, ventricular function is quantified daily by clinicians. This analysis turns out to be complex as a multitude of parameters are available, that all come with their measurement limitations and pitfalls in interpretation, because they are influenced by loading conditions and heart rate. Proper markers of myocardial contractility should indeed be able to detect subtle dysfunction, independent of loading and heart rate. Moreover, in the current multi-modal imaging environment these parameters can be assessed by different modalities, each with their own strengths and weaknesses and variable “normal” values. This report wants to provide an overview of the quantification of ventricular function in perspective to a physiological background of myocardial contractility. We discuss the most routinely used contractility parameters together with their sensitivity to loading modification. We stress the importance of understanding the relationship between loading and contractility, in order not to be misled by numbers, but to globally evaluate these numbers integrated in a hemodynamic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. Carabello BA. Evolution of the study of left ventricular function: everything old is new. Circulation. 2002;105:2701–3.

    Article  PubMed  Google Scholar 

  2. Kirkpatrick JN, Vannan MA, Narula J, et al. Echocardiography in heart failure: applications, utility, and new horizons. J Am Coll Cardiol. 2007;31:381–96.

    Article  Google Scholar 

  3. Greenbaum RA, Yen Ho S, Gibson DG, Becker AE, Anderson RH. Left ventricular fiber architecture in man. Br Heart J. 1981;45:248–63.

    Article  PubMed  CAS  Google Scholar 

  4. Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function. Basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.

    Article  PubMed  Google Scholar 

  5. Sengupta P, Tajik AJ, Chandrasekaran K, et al. Twist mechanics of the left ventricle. Principles and application. J Am Coll Cardiol Img. 2008;1:366–76.

    Google Scholar 

  6. Spotinitz HM. Macro design, structure, and mechanism of the left ventricle. J Thorac Cardiovasc Surg. 2000;119:1053–77.

    Article  Google Scholar 

  7. Opie L. Heart physiology. Lippincott Williams and Wilkins, 2004

  8. Boron WF, Boulpaep EL. Medical physiology. Updated edition. Philadelphia: Elsevier Saunders; 2005.

    Google Scholar 

  9. Sonnenblick EH. Force-velocity relations in mammalian heart muscle. Am J Physiol. 1962;202:931–9.

    PubMed  CAS  Google Scholar 

  10. Shiels HA, White E. The Frank-Starling mechanism in vertebrate cardiac myocytes. J Exp Biol. 2008;211:2005–13.

    Article  PubMed  Google Scholar 

  11. Brady AJ, Abbott BC, Mommaerts WF. Inotropic effects of trains of impulses applied during the contraction of cardiac muscle. J Gen Physiol. 1961;44:415–32.

    Article  Google Scholar 

  12. ••Van den Bergh A, Flameng W, Herijgers P. Parameters of ventricular contractility in mice: influence of load and sensitivity to changes in inotropic state. Pflugers Arch. 2008;455:987–94. Authors invasively examined the usefulness of left ventricular contractility parameters in closed-chest mice using a microtip pressure-conductance catheter at baseline and after modification in loading and contractility. The optimal contractility index should be sensitive to changes in inotropy and insensitive to changes in loading.

    Article  PubMed  Google Scholar 

  13. Pacher P, Nagayama T, Mukhopadhyay P, et al. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3:1422–34.

    Article  PubMed  CAS  Google Scholar 

  14. Attili AK, Schuster A, Nagel E, et al. Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging. 2010;1:27–40.

    Article  Google Scholar 

  15. Bogaert J, Dymarkowski S, Taylor AM, editors. Clinical cardiac MRI. Berlin: Springer; 2005.

    Google Scholar 

  16. Curtis JP, Sokol SI, Wang Y, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736–42.

    Article  PubMed  Google Scholar 

  17. Wang TJ, Evans JC, Benjamin EJ, et al. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation. 2003;108:977–82.

    Article  PubMed  Google Scholar 

  18. Nikitin NP, Constantin C, Loh PH, et al. New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur J Echocardiogr. 2006;7:365–72.

    Article  PubMed  Google Scholar 

  19. ••Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107:126–38. Authors provide a more detailed basis for analyzing and improving the accuracy of 3DE in the assessment of myocardial function through an appropriate volume evaluation.

    Article  PubMed  Google Scholar 

  20. Juergens KU, Fischbach R. Left ventricular function studied with MDCT. Eur Radiol. 2006;16:342–57.

    Article  PubMed  Google Scholar 

  21. Sugeng L, Mor-Avi V, Weinert L, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006;114:654–61.

    Article  PubMed  Google Scholar 

  22. Ioannidis JP, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol. 2002;39:2059–68.

    Article  PubMed  Google Scholar 

  23. ••Hedeer F, Palmer J, Arheden H, Ugander M. Gated myocardial perfusion SPECT underestimates left ventricular volumes and shows high variability compared to cardiac magnetic resonance imaging—a comparison of four different commercial automated software packages. BMC Med Imaging. 2010;10:10. Authors compare quantification of left ventricular volumes and ejection fraction by different gated myocardial perfusion SPECT (MPS) programs with each other and to MRI. They reported a significant underestimation of the left ventricular volumes by gated MPS, while a better ejection fraction accuracy was achieved.

    Article  PubMed  Google Scholar 

  24. Winz OH, Meyer PT, Knollmann D, Lipke, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation of the EXINI heart software package. Clin Physiol Funct imaging. 2009;29:89–94.

    Article  PubMed  Google Scholar 

  25. Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation. 1976;53:293–302.

    PubMed  CAS  Google Scholar 

  26. Kolias TJ, Aaronson KD, Armstrong WF. Doppler-derived dP/dt and -dP/dt predict survival in congestive heart failure. J Am Coll Cardiol. 2000;36:1594–9.

    Article  PubMed  CAS  Google Scholar 

  27. Weidemann F, Jamal F, Sutherland GR, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002;283:H792–9.

    PubMed  CAS  Google Scholar 

  28. Loutfi H, Nishimura RA. Quantitative evaluation of left ventricular systolic function by Doppler echocardiographic techniques. Echocardiography. 1994;11:305–14.

    Article  Google Scholar 

  29. Kass DA, Maughan WL, Guo ZM, et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure–volume relationships. Circulation. 1987;76:1422–36.

    Article  PubMed  CAS  Google Scholar 

  30. Ross Jr J. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18:255–64.

    Article  PubMed  Google Scholar 

  31. Tei C, Ling LH, Hodge DO. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol. 1995;26:357–66.

    PubMed  CAS  Google Scholar 

  32. Cheung MM, Smallhorn JF, Redington AN, et al. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements. Eur Heart J. 2004;25:2238–42.

    Article  PubMed  Google Scholar 

  33. Cannesson M, Jacques D, Pinsky MR, et al. Effects of modulation of left ventricular contractile state and loading conditions on tissue Doppler myocardial performance index. Am J Physiol Heart Circ Physiol. 2006;290:1952–9.

    Article  Google Scholar 

  34. MacGowan GA, Burkhoff D, Rogers WJ, et al. Effects of afterload on regional left ventricular torsion. Cardiovasc Res. 1996;31:917–25.

    PubMed  CAS  Google Scholar 

  35. Nowosielski M, Schocke M, Mayr A, et al. Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction. J Cardiovasc Magn Reson. 2009;9:11–22.

    Google Scholar 

  36. Kristensen TS, Kofoed KF, Møller DV, et al. Quantitative assessment of left ventricular systolic wall thickening using multidetector computed tomography. Eur J Radiol. 2009;72:92–7.

    Article  PubMed  Google Scholar 

  37. Nichols KJ, Van Tosh A, Wang Y, et al. Correspondence between gated SPECT and cardiac magnetic resonance quantified myocardial wall thickening. Int J Cardiovasc Imaging 2010;in press.

  38. Ballo P, Bocelli A, Motto A, et al. Concordance between M-mode, pulsed Tissue Doppler, and colour Tissue Doppler in the assessment of mitral annulus systolic excursion in normal subjects. Eur J Echocardiogr. 2008;9:748–53.

    Article  PubMed  Google Scholar 

  39. Carlsson M, Ugander M, Mosén H, et al. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;292:H1452–9.

    Article  PubMed  CAS  Google Scholar 

  40. Gorcsan III J, Strum DP, Mandarino WA, et al. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography: comparison with sonomicrometry and pressure–volume relations. Circulation. 1997;95:2423–33.

    PubMed  Google Scholar 

  41. Amà R, Segers P, Roosens C, et al. The effects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg. 2004;99:332–8.

    PubMed  Google Scholar 

  42. Vogel M, Cheung MM, Li J, et al. Noninvasive assessment of left ventricular force–frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation. 2003;107:1647–52.

    Article  PubMed  Google Scholar 

  43. Lyseggen E, Rabben SI, Skulstad H, Urheim S, Risoe C, Smiseth OA. Myocardial acceleration during isovolumic contraction: relationship to contractility. Circulation. 2005;111:1362–9.

    Article  PubMed  Google Scholar 

  44. Sutherland GR, Di Salvo G, Claus P, et al. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr. 2004;17:788–802.

    Article  PubMed  Google Scholar 

  45. Seo Y, Ishizu T, Enomoto Y, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2:451–9.

    Article  PubMed  Google Scholar 

  46. Kleijn SA, Aly MF, Terwee CB, et al. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J Am Soc Echocardiogr. 2011;24:314–22.

    Article  PubMed  Google Scholar 

  47. Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation. 2005;111:1141–7.

    Article  PubMed  Google Scholar 

  48. Ashraf M, Myronenko A, Nguyen T, et al. Defining left ventricular apex-to-base twist mechanics computed from high-resolution 3D echocardiography: validation against sonomicrometry. JACC Cardiovasc Imaging. 2010;3:227–34.

    Article  PubMed  Google Scholar 

  49. Abraham TP, Laskowski C, Zhan WZ, et al. Myocardial contractility by strain echocardiography: comparison with physiological measurements in an in vitro model. Am J Physiol Heart Circ Physiol. 2003;285:H2599–604.

    PubMed  CAS  Google Scholar 

  50. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.

    Article  PubMed  Google Scholar 

  51. Rosner A, Bijnens B, Hansen M, et al. Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr. 2009;10:271–7.

    Article  PubMed  Google Scholar 

  52. Burns AT, La Gerche A, D’hooge J, et al. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11:283–9.

    Article  PubMed  Google Scholar 

  53. Oki T, Fukuda K, Tabata T, et al. Effect of an acute increase in afterload on left ventricular regional wall motion velocity in healthy subjects. J Am Soc Echocardiogr. 1999;12:476–83.

    Article  PubMed  CAS  Google Scholar 

  54. Weytjens C, D’hooge J, Droogmans S, Van den Bergh A, Cosyns B, Lahoutte T, et al. Influence of heart rate reduction on Doppler myocardial imaging parameters in a small animal model. Ultrasound Med Biol. 2009;35(1):30–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Claus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claus, P., Slavich, M. & Rademakers, F.E. Left-Ventricular Function Quantitative Parameters and Their Relationship to Acute Loading Variation: From Physiology to Clinical Practice. Curr Cardiovasc Imaging Rep 5, 83–91 (2012). https://doi.org/10.1007/s12410-012-9129-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9129-5

Keywords

Navigation