Skip to main content

Advertisement

Log in

Echocardiographic Deformation Imaging for the Assessment of Left Ventricular Function: Clinical Implications and Perspectives— Update 2014

  • Echocardiography (T Buck, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Echocardiographic deformation imaging is an emerging clinical method, which allows quantifying global and regional myocardial function. Its potential has been demonstrated in a large number of research settings, and it is now approaching routine clinical practice. This review provides an update on the recent developments in the field of deformation imaging and highlights current and potential future clinical applications of this promising technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Heimdal A, Støylen A, Torp H, Skjærpe T. Real-Time Strain Rate Imaging of the Left Ventricle by Ultrasound. J Am Soc Echocardiogr. 1998;11:1013–9.

    Article  PubMed  CAS  Google Scholar 

  2. D’hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr. 2000;1:154–70.

    Article  PubMed  Google Scholar 

  3. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography : validation of a new method to quantify regional myocardial function. Circulation. 2000;102:1158–64.

    Article  PubMed  CAS  Google Scholar 

  4. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12:167–205. This expert consensus statement provides an excellent description of the basics of myocardial deformation imaging and provides a balanced review of the clinical utility and limitations of the different techniques.

    Article  PubMed  Google Scholar 

  5. Zamorano JL, Bax J, Rademakers F, Knuuti J. The ESC Textbook of Cardiovascular Imaging. London: Springer-Verlag; 2010.

    Google Scholar 

  6. Galiuto L, Luigi B, Fox K, Sicari R, Zamorano JL. The EAE Textbook of Echocardiography. Oxford: Oxford University Publishing; 2011.

    Book  Google Scholar 

  7. Yoshida T, Mori M, Nimura Y, Hikita G, Takagishi S, Nakanishi K, et al. Analysis of heart motion with ultrasonic Doppler method and its clinical application. Am Heart J. 1961;61:61–75.

    Article  PubMed  CAS  Google Scholar 

  8. McDicken WN, Sutherland GR, Moran CM, Gordon LN. Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol. 1992;18:651–4.

    Article  PubMed  CAS  Google Scholar 

  9. D’hooge J, Konofagou E, Jamal F, Heimdal A, Barrios L, Bijnens B, et al. Two-dimensional ultrasonic strain rate measurement of the human heart in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:281–6.

    Article  PubMed  Google Scholar 

  10. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.

    Article  PubMed  Google Scholar 

  11. Wierzbowska-Drabik K, Hamala P, Roszczyk N, Lipiec P, Plewka M, Kręcki R, et al. Feasibility and correlation of standard 2D speckle tracking echocardiography and automated function imaging derived parameters of left ventricular function during dobutamine stress test. Int J Cardiovasc Imaging. 2014;30:729–37.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Badano LP, Cucchini U, Muraru D, Al Nono O, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14:285–93.

    Article  PubMed  Google Scholar 

  13. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.

    Article  PubMed  Google Scholar 

  14. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–33.

    Article  PubMed  Google Scholar 

  15. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.

    Article  PubMed  CAS  Google Scholar 

  16. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  PubMed  CAS  Google Scholar 

  17. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation. 2009;119:62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 2008;101:1504–9.

    Article  PubMed  Google Scholar 

  19. Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Fahkri Y, Thune JJ, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle-tracking study. Eur Heart J. 2014;35:648–56.

    Article  PubMed  Google Scholar 

  20. Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N. Assessment of left ventricular systolic function using echocardiography in patients with preserved ejection fraction and elevated diastolic pressures. Am J Cardiol. 2008;101:1766–71.

    Article  PubMed  Google Scholar 

  21. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54:36–46.

    Article  PubMed  Google Scholar 

  22. Carluccio E, Biagioli P, Alunni G, Murrone A, Leonelli V, Pantano P, et al. Advantages of deformation indices over systolic velocities in assessment of longitudinal systolic function in patients with heart failure and normal ejection fraction. Eur J Heart Fail. 2011;13:292–302.

    Article  PubMed  Google Scholar 

  23. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63:447–56.

    Article  PubMed  Google Scholar 

  24. Bansal M, Leano RL, Marwick TH. Clinical assessment of left ventricular systolic torsion: effects of myocardial infarction and ischemia. J Am Soc Echocardiogr. 2008;21:887–94.

    Article  PubMed  Google Scholar 

  25. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith H-J, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.

    Article  PubMed  Google Scholar 

  26. Kim H-K, Sohn D-W, Lee S-E, Choi S-Y, Park J-S, Kim Y-J, et al. Assessment of left ventricular rotation and torsion with two-dimensional speckle tracking echocardiography. J Am Soc Echocardiogr. 2007;20:45–53.

    Article  PubMed  Google Scholar 

  27. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the heart. Eur Heart J. 2012;33:1787–847.

    Article  PubMed  Google Scholar 

  28. Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr. 2004;17:630–3.

    Article  PubMed  Google Scholar 

  29. Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vartdal T, Aakhus S, et al. Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ Cardiovasc Imaging. 2008;1:189–96. 2 p following 196.

    Article  PubMed  Google Scholar 

  30. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging. 2009;2:356–64.

    Article  PubMed  Google Scholar 

  31. Antoni ML, Mollema SA, Delgado V, Atary JZ, Borleffs CJW, Boersma E, et al. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J. 2010;31:1640–7.

    Article  PubMed  Google Scholar 

  32. Woo JS, Kim W-S, Yu T-K, Ha SJ, Kim SY, Bae J-H, et al. Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2011;108:340–7.

    Article  PubMed  Google Scholar 

  33. Bertini M, Ng ACT, Antoni ML, Nucifora G, Ewe SH, Auger D, et al. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:383–91.

    Article  PubMed  Google Scholar 

  34. Munk K, Andersen NH, Terkelsen CJ, Bibby BM, Johnsen SP, Bøtker HE, et al. Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr. 2012;25:644–51.

    Article  PubMed  Google Scholar 

  35. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;0:1–8.

  36. Ternacle J, Berry M, Alonso E, Kloeckner M, Couetil J-P, Randé J-LD, et al. Incremental value of global longitudinal strain for predicting early outcome after cardiac surgery. Eur Heart J Cardiovasc Imaging. 2013;14:77–84.

    Article  PubMed  Google Scholar 

  37. Bergler-Klein J. Global longitudinal strain for predicting outcome after mitral repair or cardiac surgery: here to stay? Eur Heart J Cardiovasc Imaging. 2013;14:12–4.

    Article  PubMed  Google Scholar 

  38. Witkowski TG, Thomas JD, Debonnaire PJMR, Delgado V, Hoke U, Ewe SH, et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur Heart J Cardiovasc Imaging. 2013;14:69–76.

    Article  PubMed  Google Scholar 

  39. Ersbøll M, Valeur N, Mogensen UM, Andersen M, Greibe R, Møller JE, et al. Global left ventricular longitudinal strain is closely associated with increased neurohormonal activation after acute myocardial infarction in patients with both reduced and preserved ejection fraction: a two-dimensional speckle tracking study. Eur J Heart Fail. 2012;14:1121–9.

    Article  PubMed  Google Scholar 

  40. Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61:2365–73.

    Article  PubMed  Google Scholar 

  41. Farsalinos K, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Variability in global longitudinal strain measurements between different vendors: the EACVI-ASE-Inter-Vendor Comparison Study 2014; [Under review]. Yet to be published paper providing the first head-to head-comparison of the reproducibility and bias of 9 different contemporary speckle tracking software packages.

  42. Thomas JD, Badano LP. EACVI-ASE-industry initiative to standardize deformation imaging: a brief update from the co-chairs. Eur Heart J Cardiovasc Imaging. 2013;14:1039–40.

    Article  PubMed  Google Scholar 

  43. Szulik M, Pappas CJ, Jurcut R, Magro M, Peeters E, Goetschalckx K, et al. Clinical validation of a novel speckle-tracking-based ejection fraction assessment method. J Am Soc Echocardiogr. 2011;24:1092–100.

    Article  PubMed  Google Scholar 

  44. Cannesson M, Tanabe M, Suffoletto MS, McNamara DM, Madan S, Lacomis JM, et al. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol. 2007;49:217–26.

    Article  PubMed  Google Scholar 

  45. Eek C, Grenne B, Brunvand H, Aakhus S, Endresen K, Smiseth OA, et al. Postsystolic shortening is a strong predictor of recovery of systolic function in patients with non-ST-elevation myocardial infarction. Eur J Echocardiogr. 2011;12:483–9.

    Article  PubMed  Google Scholar 

  46. Asanuma T, Fukuta Y, Masuda K, Hioki A, Iwasaki M, Nakatani S. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC Cardiovasc Imaging. 2012;5:1–11.

    Article  PubMed  Google Scholar 

  47. Voigt J-U, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.

    Article  PubMed  Google Scholar 

  48. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH. Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imaging. 2010;3:121–31.

    Article  PubMed  Google Scholar 

  49. Eek C, Grenne B, Brunvand H, Aakhus S, Endresen K, Hol PK, et al. Strain echocardiography and wall motion score index predicts final infarct size in patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging. 2010;3:187–94.

    Article  PubMed  Google Scholar 

  50. Mollema SA, Delgado V, Bertini M, Antoni ML, Boersma E, Holman ER, et al. Viability assessment with global left ventricular longitudinal strain predicts recovery of left ventricular function after acute myocardial infarction. Circ Cardiovasc Imaging. 2010;3:15–23.

    Article  PubMed  Google Scholar 

  51. Ersbøll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M, Svendsen JH, et al. Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013;6:851–60.

    Article  PubMed  Google Scholar 

  52. Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013;6:841–50.

    Article  PubMed  Google Scholar 

  53. Yu C-M. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation. 2002;105:438–45.

    Article  PubMed  Google Scholar 

  54. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834–40.

    Article  PubMed  Google Scholar 

  55. Yu C-M, Gorcsan J, Bleeker GB, Zhang Q, Schalij MJ, Suffoletto MS, et al. Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol. 2007;100:1263–70.

    Article  PubMed  Google Scholar 

  56. Chung ES, Leon AR, Tavazzi L, Sun J-P, Nihoyannopoulos P, Merlino J, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.

    Article  PubMed  Google Scholar 

  57. Miyazaki C, Redfield MM, Powell BD, Lin GM, Herges RM, Hodge DO, et al. Dyssynchrony indices to predict response to cardiac resynchronization therapy: a comprehensive prospective single-center study. Circ Heart Fail. 2010;3:565–73.

    Article  PubMed  Google Scholar 

  58. Breithardt OA, Stellbrink C, Herbots L, Claus P, Sinha AM, Bijnens B, et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2003;42:486–94.

    Article  PubMed  Google Scholar 

  59. Reant P, Zaroui A, Donal E, Mignot A, Bordachar P, Deplagne A, et al. Identification and characterization of super-responders after cardiac resynchronization therapy. Am J Cardiol. 2010;105:1327–35.

    Article  PubMed  Google Scholar 

  60. Mele D, Toselli T, Capasso F, Stabile G, Piacenti M, Piepoli M, et al. Comparison of myocardial deformation and velocity dyssynchrony for identification of responders to cardiac resynchronization therapy. Eur J Heart Fail. 2009;11:391–9.

    Article  PubMed  Google Scholar 

  61. Lim P, Donal E, Lafitte S, Derumeaux G, Habib G, Réant P, et al. Multicentre study using strain delay index for predicting response to cardiac resynchronization therapy (MUSIC study). Eur J Heart Fail. 2011;13:984–91.

    Article  PubMed  Google Scholar 

  62. Gorcsan J, Oyenuga O, Habib PJ, Tanaka H, Adelstein EC, Hara H, et al. Relationship of echocardiographic dyssynchrony to long-term survival after cardiac resynchronization therapy. Circulation. 2010;122:1910–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tanaka H, Nesser H-J, Buck T, Oyenuga O, Jánosi RA, Winter S, et al. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J. 2010;31:1690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA, et al. Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol. 2008;51:1944–52.

    Article  PubMed  Google Scholar 

  65. D’Andrea A, Caso P, Scarafile R, Riegler L, Salerno G, Castaldo F, et al. Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2009;11:58–67.

    Article  PubMed  Google Scholar 

  66. Becker M, Zwicker C, Kaminski M, Napp A, Altiok E, Ocklenburg C, et al. Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position. JACC Cardiovasc Imaging. 2011;4:366–74.

    Article  PubMed  Google Scholar 

  67. Becker M, Altiok E, Ocklenburg C, Krings R, Adams D, Lysansky M, et al. Analysis of LV lead position in cardiac resynchronization therapy using different imaging modalities. JACC Cardiovasc Imaging. 2010;3:472–81.

    Article  PubMed  Google Scholar 

  68. Leenders GE, Lumens J, Cramer MJ, De Boeck BWL, Doevendans PA, Delhaas T, et al. Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ Heart Fail. 2012;5:87–96.

    Article  PubMed  Google Scholar 

  69. Szulik M, Tillekaerts M, Vangeel V, Ganame J, Willems R, Lenarczyk R, et al. Assessment of apical rocking: a new, integrative approach for selection of candidates for cardiac resynchronization therapy. Eur J Echocardiogr. 2010;11:863–9.

    Article  PubMed  Google Scholar 

  70. Stankovic I, Aarones M, Smith H-J, Vörös G, Kongsgaard E, Neskovic AN, et al. Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J. 2014;35:48–55.

    Article  PubMed  CAS  Google Scholar 

  71. Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2014;7:11–9.

    Article  PubMed  Google Scholar 

  72. Garceau P, Carasso S, Woo A, Overgaard C, Schwartz L, Rakowski H. Evaluation of left ventricular relaxation and filling pressures in obstructive hypertrophic cardiomyopathy: comparison between invasive hemodynamics and two-dimensional speckle tracking. Echocardiography. 2012;29:934–42.

    Article  PubMed  Google Scholar 

  73. Tigen K, Sunbul M, Karaahmet T, Dundar C, Ozben B, Guler A, et al. Left ventricular and atrial functions in hypertrophic cardiomyopathy patients with very high LVOT gradient: a speckle tracking echocardiographic study. Echocardiography. 2014;31:833–41.

  74. Correia E, Rodrigues B, Santos LF, Moreira D, Gama P, Cabral C, et al. Longitudinal left ventricular strain in hypertrophic cardiomyopathy: correlation with nonsustained ventricular tachycardia. Echocardiography. 2011;28:709–14.

    Article  PubMed  Google Scholar 

  75. Moon J. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–5.

    Article  PubMed  Google Scholar 

  76. Weidemann F, Niemann M, Herrmann S, Kung M, Störk S, Waller C, et al. A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium. Eur Heart J. 2007;28:3020–6.

    Article  PubMed  Google Scholar 

  77. Krämer J, Niemann M, Liu D, Hu K, Machann W, Beer M, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34:1587–96.

    Article  PubMed  Google Scholar 

  78. Saccheri MC, Cianciulli TF, Lax JA, Gagliardi JA, Cáceres GL, Quarin AE, et al. Two-dimensional speckle tracking echocardiography for early detection of myocardial damage in young patients with Fabry disease. Echocardiography. 2013;30:1069–77.

    PubMed  Google Scholar 

  79. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Störk S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:1066–72.

    Article  PubMed  Google Scholar 

  80. Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J. 2009;30:3037–47.

    Article  PubMed  Google Scholar 

  81. Olsen NT, Sogaard P, Larsson HBW, Goetze JP, Jons C, Mogelvang R, et al. Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovasc Imaging. 2011;4:223–30.

    Article  PubMed  Google Scholar 

  82. Cengiz B, Yurdakul S, Sahin ST, Kahraman S, Aytekin S. Subclinical left ventricular systolic dysfunction in patients with severe aortic stenosis: a speckle tracking and real time three dimensional echocardiographic study. J Am Coll Cardiol. 2013;62:C2–3.

    Article  Google Scholar 

  83. Onishi T, Kawai H, Tatsumi K, Kataoka T, Sugiyama D, Tanaka H, et al. Preoperative systolic strain rate predicts postoperative left ventricular dysfunction in patients with chronic aortic regurgitation. Circ Cardiovasc Imaging. 2010;3:134–41.

    Article  PubMed  Google Scholar 

  84. Thorstensen A, Dalen H, Amundsen BH, Aase SA, Stoylen A. Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the HUNT study. Eur J Echocardiogr. 2010;11:149–56.

    Article  PubMed  Google Scholar 

  85. Voigt J, Pedrizzetti G, Lysyansky P, Marwick T, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography. Consensus document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging 2014; [In press]. First ever consensus statement between professional societies and ultrasound manufacturers aiming at common standards for 2D STI.

  86. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R. Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr. 2009;10:303–8.

    Article  PubMed  Google Scholar 

  87. Leitman M, Lysiansky M, Lysyansky P, Friedman Z, Tyomkin V, Fuchs T, et al. Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr. 2010;23:64–70.

    Article  PubMed  Google Scholar 

  88. Sarvari SI, Haugaa KH, Zahid W, Bendz B, Aakhus S, Aaberge L, et al. Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6:535–44.

    Article  PubMed  Google Scholar 

  89. Barbosa D, Claus P, Choi HF, Hristova K, Loeckx D, D’hooge J. An in-vivo study on the difference between principal and cardiac strains. 2009 I.E. Int Ultrason Symp, IEEE; 2009. p. 1411–4.

  90. Mangual JO, De Luca A, Toncelli L, Domenichini F, Galanti G, Pedrizzetti G. Three-dimensional reconstruction of the functional strain-line pattern in the left ventricle from 3-dimensional echocardiography. Circ Cardiovasc Imaging. 2012;5:808–9.

    Article  PubMed  Google Scholar 

  91. Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M. Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol. 2011;58:65–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Jens-Uwe Voigt holds a personal research mandate of the Flemish Research Foundation (FWO) and receives research support from the University Hospital Leuven.

Compliance with Ethics Guidelines

Conflict of Interest

Jürgen Duchenne, Razvan O. Mada, Olivier Gheysens, and Jens-Uwe Voigt declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Uwe Voigt.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchenne, J., Mada, R.O., Gheysens, O. et al. Echocardiographic Deformation Imaging for the Assessment of Left Ventricular Function: Clinical Implications and Perspectives— Update 2014. Curr Cardiovasc Imaging Rep 7, 9297 (2014). https://doi.org/10.1007/s12410-014-9297-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9297-6

Keywords

Navigation