Skip to main content

Advertisement

Log in

Hydrochemistry of Fluoride in Groundwaters from the Permo–Triassic Aquifer System of Central Shaanxi Province, Northwest China

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

An Erratum to this article was published on 20 December 2016

Abstract

The district of Chengcheng lies within Weinan city in central Shaanxi Province. It suffers from serious water shortages, a dilemma that is amplified by elevated concentrations of fluoride in the groundwater, a primary source of domestic water supply. To determine the extent and origin of the fluoride problem, a study was undertaken involving 144 groundwater samples collected from two aquifers in the region: the shallow Quaternary overburden aquifer (QLB) (10 samples) and the more widely utilized Permo–Triassic-fractured rock aquifer (PTF) (134 samples). Spatial analysis of the hydrochemical data shows that concentrations of fluoride in the PTF increase from north to south, generally following the direction of groundwater flow. 50 % of the samples show fluoride in excess of the 1.0 mg/L drinking water quality standard. Statistical analysis of data from the Permo–Triassic-fractured rock aquifer shows the fluoride to correlate positively with Ca2+, Na+, and HCO3 and suggests mineral dissolution involving fluorite (CaF2) to be the primary source of the elevated fluoride. Analysis using PHREEQC reveals the groundwaters to be oversaturated with respect to calcite but undersaturated with respect to fluorite, and support such a hypothesis. Significantly, a positive relationship between NO3 and F for the PTF groundwaters suggests that trace amounts of fluoride in applied fertilizers may provide an additional source of fluoride. 28 water samples were also investigated using stable isotopes (δD and δ18O) and reveal that aquifer recharge is primarily due to irrigation water derived from the Shibaochuan Reservoir at high elevation to the north west of the study area, the irrigation water undergoing significant evaporation prior to entering the aquifer. The concentrating effect of evaporation also contributes to the elevated fluoride problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alarcon-Herrera M, Bundschuh J, Nath B, Nicolli H, Gutierrez M, Reyes-Gomez V, Nufiez D, Martin-Dominguez I, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969

    Article  CAS  Google Scholar 

  • Barrett J (2003) Inorganic chemistry in aqueous solution. The Royal Society of Chemistry, Cambridge, p 185

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer Science + Business Media, p.306

  • Bower C, Hatcher J (1967) Adsorption of fluoride by soils and minerals. Soil Sci 103(3):151–154

    Article  CAS  Google Scholar 

  • Brindha K, Elango L (2013) Geochemistry of fluoride rich groundwater in a weathered granitic rock region, southern India. Water Quality, Exposure and Health 5:127–138

    Article  CAS  Google Scholar 

  • Brindha K, Rajesh R, Murugan R, Elango L (2011) Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 172:481–492

    Article  CAS  Google Scholar 

  • Chen X, Li Z, Cheng L, Liu W, Wang R (2016) Analysis of stable isotopic composition and vapor source of precipitation at Changwu loess Tableland. Acta Ecologica Sinica 36(1):98–106

    Google Scholar 

  • Datta P, Bhattacharya S, Tyagi S (1996a) 18O studies on recharge of phreatic aquifers and groundwater flow-paths of mixing in the Delhi area. J Hydrol 176:25–36

    Article  CAS  Google Scholar 

  • Datta P, Deb D, Tyagi S (1996b) Stable isotope(18O) investigations on the processes controlling fluoride contamination of groundwater. J Contam Hydrogeol 24:85–96

    Article  CAS  Google Scholar 

  • Elrashidi M, Lindsay W (1986) Chemical equilibria of fluorine in soils: a theoretical development. Soil Sci 141(4):274–281

    Article  CAS  Google Scholar 

  • European Fertilizer Manufacturers’ Association (2000) Production of NPK fertilizers by the nitrophosphate route. Booklet #7 of 8. p.36

  • Ferronsky V, Pluakow V (2009) Isotopes of Earth’s Hydrosphere. Springer, Dordrecht, p 626

    Google Scholar 

  • Gomez M, Blarasin M, Martinez D (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155

    Article  CAS  Google Scholar 

  • Handa B (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater 13(3):275–281

    Article  CAS  Google Scholar 

  • Hem J (1970) Study and interpretation of the chemical characteristics of natural water. Geological Survey Water-Supply Paper, Washington D.C., p. 380

  • Hem J, Roberson C (1967) Form and stability of aluminum hrdroxide complexes in dilute solution. Geological Survey Water-Supply Paper, Washington D.C., p. 60

  • Jagadeshan G, Kalpana L, Elango L (2015) Hydrogeochemistry of high fluoride groundwater in hard rock aquifer in a part of Dharmapuri district, Tamil Nadu, India. Geochem Int 52(6):554–564

    Article  Google Scholar 

  • Khair A, Li C, Hu Q, Gao X, Wang Y (2014) Fluoride and arsenic hydrogeochemistry of groundwater at Yuncheng Basin, Northern China. Geochem Int 52(10):868–881

    Article  CAS  Google Scholar 

  • Kumar PJ, Jegathambal P, James E (2014) Factors influencing the high fluoride concentration in groundwater of Vellore District, South India. Environ Earth Sci 72:2437–2446

    Article  Google Scholar 

  • Landau Sand Everitt B (2004) A handbook statistical analyses using SPSS. Chapman & Hau/CRC Press, Boca Raton, p 339

    Google Scholar 

  • Li P, Qian H, Wu J, Ding J (2010) Geochemical modeling of groundwater in southern plain area of Pengyang County, Ningxia. China. Water Sci Eng 3(3):282–291. doi:10.3882/j.issn.1674-2370.2010.03.004

    CAS  Google Scholar 

  • Li P, Qian H, Wu J (2011) Hydrochemical characteristics and evolution laws of drinking groundwater in Pengyang County, Ningxia, Northwest China. J Chem 8(2):565–575. doi:10.1155/2011/472085

    CAS  Google Scholar 

  • Li P, Qian H, Wu J, Zhang Y, Zhang H (2013a) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin. China. Mine Water Environ 32(3):195–206. doi:10.1007/s10230-013-0234-8

    Article  CAS  Google Scholar 

  • Li P, Wu J, Qian H (2013b) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County. China. Environ Earth Sci 69(7):2211–2225. doi:10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H (2014a) Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River, China. Environ Earth Sci 71(7):3133–3145. doi:10.1007/s12665-013-2691-6

    Article  CAS  Google Scholar 

  • Li P, Qian H, Wu J (2014b) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712. doi:10.1007/s10653-013-9590-3

    Article  CAS  Google Scholar 

  • Li P, Wu J, Qian H (2016a) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):15. doi:10.1007/s12517-015-2059-1

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016b) Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China. Environ Earth Sci 75(2):99. doi:10.1007/s12665-015-4949-7

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016c) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Expo Health, Northwest China. doi:10.1007/s12403-016-0193-y

    Google Scholar 

  • Liu X, Bai G, Fan Z, Li X, Li P (2005) The investigation of prevalence state of drinking water-born endemic fluorosis in Shaanxi. Chin J Endemiol 24(1):56–58 (English Abstract)

    CAS  Google Scholar 

  • Liu H, Guo H, Yang L, Wu L, Li F, Li S, Ni P, Liang X (2015) Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain. Environ Earth Sci 74:2329–2340

    Article  CAS  Google Scholar 

  • Mesdaghinia A, Vaghefi K, Montazeri A, Mohebbi M, Saeedi R (2010) Monitoring of fluoride in groundwater resources of Iran. Bull Environ Contam Toxicol 84:432–437

    Article  CAS  Google Scholar 

  • Misra A, Mishra A (2007) Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis. J Hazard Mater 144:438–448

    Article  CAS  Google Scholar 

  • Naseem S, Rafique T, Bashir E, Bhanger M, Laghari A, Usmani T (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78:1313–1321

    Article  CAS  Google Scholar 

  • Parkhurst D, Appelo C (1999) User’s guide to PHREEQC (Version 2). US Geological Survey

  • Qian H, Li P (2011) Hydrochemical characteristics of groundwater in Yinchuan plain and their control factors. Asian J Chem 23(7):2927–2938

    CAS  Google Scholar 

  • Qian H, Li P, Wu J, Zhou Y (2013) Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain, Northwest China. Environ Earth Sci 70:57–70. doi:10.1007/s12665-012-2103-3

    Article  Google Scholar 

  • Qiu J (2010) China faces up to groundwater crisis. Nature 466:308

    Article  CAS  Google Scholar 

  • Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    CAS  Google Scholar 

  • Selinus O (2013) Essential of medical geology. Springer, Dordrecht, p 808

    Book  Google Scholar 

  • Singh C, Rina K, Singh R, Kamal V, Mukherjee S (2011) Geochemical modeling of high fluoride concentration in groundwater of Pokhran Area of Rajasthan, India. Bull Environ Contam Toxicol 86:152–158

    Article  CAS  Google Scholar 

  • Turner B, Binning P, Stipp S (2005) Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ Sci Technol 39:9561–9568

    Article  CAS  Google Scholar 

  • Wei C, Guo H, Zhang D, Wu Y, Han S, An Y, Zhang F (2015) Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environ Geochem Health. doi:10.1007/s10653-015-9716-x

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wu J, Sun Z (2015) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities. Expo Health, Mid-west China. doi:10.1007/s12403-015-0170-x

    Google Scholar 

  • Wu J, Li P, Qian H (2012) Study on the hydrogeochemistry and non-carcinogenic health risk induced by fluoride in Pengyang County, China. Int J Environ Sci 2(3):1127–1134. doi:10.6088/ijes.00202030001

    CAS  Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan. China. Arab J Geosci 7(10):3973–3982. doi:10.1007/s12517-013-1057-4

    Article  CAS  Google Scholar 

  • Wu J, Li P, Qian H (2015) Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci 73(12):8575–8588. doi:10.1007/s12665-015-4018-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the Fundamental Research Funds for Central Universities, China (No. 2013G1502045), a China Scholarship Council award to the first author, and project funding from the China Geology Survey (No. 12120113103600) to the first, fourth, and fifth authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Dou.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12403-016-0239-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Howard, K., Yang, L. et al. Hydrochemistry of Fluoride in Groundwaters from the Permo–Triassic Aquifer System of Central Shaanxi Province, Northwest China. Expo Health 8, 419–429 (2016). https://doi.org/10.1007/s12403-016-0218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-016-0218-6

Keywords

Navigation