Skip to main content
Log in

Effect of Magnetic Field on Frozen Food Quality Characteristics

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Freezing is a widely used technology for food processing that not only lowers the temperature of food below its freezing point but also inhibits microbial activity and slows down biochemical reactions to enable long-term preservation. However, the freeze thawing cycle can cause various chemical and physical damages to food, which are the main influencing mechanisms of low-temperature preservation. The size of ice crystals determines the degree of physical damage to cells, which has a significant impact on the freezing quality. Magnetic field (MF) treatment is a physical method that has been found to be milder, more effective, and have no obvious side effects compared to chemical treatments. Numerous studies have reported that MF promotes the cold storage of food, prolongs shelf life, inhibits ice crystal nucleation, increases supercooling, accelerates freezing speed, and reduces ice crystal sizes significantly. However, the role of MF in ice nuclei formation is still unresolved, and there are inconsistencies in research results and a lack of clear understanding of its potential mechanism. This paper aims to introduce the influence of MF on the formation and growth of ice crystals, summarize freezing curves on water and salt solutions, and analyze MF applications from two aspects: the thermodynamic mechanism and molecular dynamics point of view for freezing processes. Additionally, it discusses the problems encountered in recent researches and presents future development trends. The conclusion can be drawn that MF demonstrates great application potential in the field of freezing processes and food quality attribute evaluation. However, many questions remain with little consensus in the literature regarding their roles, and the mechanism of action is not unified. The application of MF in food freezing processes is still challenging. This paper hopes to provide guidance for future work on food freezing and contribute to the advancement of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

MF:

Magnetic field

SMF:

Static magnetic field

AMF:

Alternating magnetic field

OMF:

Oscillating magnetic field

PMF:

Pulsed magnetic field

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

PPO:

Polyphenol oxidase

CAT:

Catalase

SOD:

Superoxide dismutase

POD:

Peroxidase

MDA:

Malondialdehyde

\(\Delta G\) :

Gibbs free energy, J

\({\Delta G}_{\left(s\right)}\) :

Surface free energy, J

\(\Delta G\left(V\right)\) :

Volume free energy, J

\(\Delta {G}_{V}\) :

Free energy of freezing per unit volume, J/m3

\(r\) :

The equivalent radius of the ice crystal, m

\({r}^{*}\) :

The critical equivalent radius of the ice crystal without the magnetic field, m

\({r}_{m}^{*}\) :

The critical equivalent radius of the ice crystal with the magnetic field, m

\(\sigma\) :

Surface free energy of the crystal fluid interface without the magnetic field, J/m2

\({\sigma }_{m}\) :

Surface free energy of the crystal fluid interface with the magnetic field, J/m2

\(\Delta {H}_{m,f}\) :

Molar enthalpy of fusion, J/mol

\(\Delta {G}_{V,m}\) :

Free energy change of the transformation per unit volume,J/m3

\({T}_{f}\) :

Melting temperature, K

\(T\) :

Temperature, K

\({V}_{m}\) :

Molar volume, m3/mol

\(H\) :

Magnetic field intensity, A/m

\(M\) :

Magnetic polarization, A/m

\(B\) :

Magnetic flux density, T

\(\mu\) :

Magnetic permeability

\({\mu }_{0}\) :

Magnetic permeability of vacuum

\(K\) :

Parameter of nucleation rate

\(C\) :

Pre-exponential term

\(k\) :

Boltzmann constant

\(f\) :

Frequency of monomer attachment to the nucleus

\({C}_{0}\) :

The concentration of nucleation sites

\(z\) :

Zeldovich or imbalance factor

\({N}_{1}\) :

The monomer concentration

\({N}^{*}\) :

Concentration of nuclei

References

  1. Shi H, Xu H, Gao W, et al. (2022) The impact of energy poverty on agricultural productivity: The case of China[J]. Energy Policy 167:113020. https://doi.org/10.1016/j.enpol.2022.113020

  2. Haq ZU, Iqbal M, Jamil Y et al (2016) Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Inform Proc Agric 3(2):99–106

    Google Scholar 

  3. Florez M, Carbonell M, Martinez E (2007) Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ Exp Bot 59(1):68–75

    Article  Google Scholar 

  4. Saletnik B, Zaguła G, Saletnik A et al (2022) Effect of Magnetic and Electrical Fields on Yield, Shelf Life and Quality of Fruits. Appl Sci 12(6):3183

    Article  CAS  Google Scholar 

  5. Sokolov AA, Vinogradov DV, Kryuchkov MM (2022) Influence of seed treatment with a magnetic field on sowing qualities and performance of spring barley. IOP Conf Ser Earth Environ Sci 954(1):012075

    Article  Google Scholar 

  6. Saletnik B, Saletnik A, Slysz E et al (2022) The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 27(18):5823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. de Souza A, Garci D, Sueiro L et al (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27(4):247–257

    Article  PubMed  Google Scholar 

  8. Hafeez MB, Zahra N, Ahmad N et al (2022) Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol (Stuttg)

    PubMed  Google Scholar 

  9. Saletnik B, Zaguła G, Saletnik A et al (2022) Method for Prolonging the Shelf Life of Apples after Storage. Appl Sci 12(8):3975

    Article  CAS  Google Scholar 

  10. Lu N, Ma J, Sun DW (2022) Enhancing physical and chemical quality attributes of frozen meat and meat products: Mechanisms, techniques and applications. Trends Food Sci Technol 124:63–85

    Article  CAS  Google Scholar 

  11. Shokribousjein Z, Galan DR, Michiels C et al (2015) Effect of a magnetic field on dispersion of a hop extract and the influence on gushing of beer. J Food Eng 145:10–18

    Article  Google Scholar 

  12. Song YS, Moon S, Hulli L et al (2009) Microfluidics for cryopreservation. Lab Chip 9(13):1874–1881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67(3):1582–1593

    Article  ADS  Google Scholar 

  14. Mainvil LA, Horwath CC, McKenzie JE et al (2011) Validation of brief instruments to measure adult fruit and vegetable consumption. Appetite 56(1):111–117

    Article  PubMed  Google Scholar 

  15. Chen B-K, Chang C-K, Cheng K-C et al (2022) Using the response surface methodology to establish the optimal conditions for preserving bananas (Musa acuminata) in a pulsed electric field and to decrease browning induced by storage at a low temperature. Food Packaging Shelf Life 31:100804

    Article  Google Scholar 

  16. Rodríguez AC, James C, James SJ (2017) Effects of Weak Oscillating Magnetic Fields on the Freezing of Pork Loin. Food Bioprocess Technol 10(9):1615–21

    Article  Google Scholar 

  17. Tang J, Shao S, Tian C (2020) Effects of the magnetic field on the freezing process of blueberry. Int J Refrig 113:288–295

    Article  Google Scholar 

  18. Liu B, Song JF, Yao ZD et al (2017) Effects of Magnetic Field on the Phase Change Cells and the Formation of Ice Crystals in Biomaterials: Carrot Case. J Ther Sci Eng Appl 9(3)

    Google Scholar 

  19. Chen A, Liu Y, El Achkar G et al (2021) Effects of magnetic field on freezing characters of carrot, potato and broccoli. Eur Phys J Appl Phys 93(1):10201

    Article  ADS  Google Scholar 

  20. Tagami M, Hamai M, Mogi I et al (1999) Solidifcation of levitating water in a gradient strong magnetic field. J Cryst Growth 203:594–598

    Article  ADS  CAS  Google Scholar 

  21. Aleksandrov VD, Barannikov AA, Dobritsa NV (2000) Effect of Magnetic Field on the Supercooling of Water Drops. Inorg Mater 36:1072–5

    Article  Google Scholar 

  22. Jianfei S, Bin L, Wenqiang G et al (2016) Effect of DC Magnetic Field on Freezing Process of Onion Cells. J Refrig 37(02):107–112

    Google Scholar 

  23. Xiaoyang W, Bin L, Jianfei S et al (2020) Effect of Magnetic Field Assist Freezing on the Storage Quality of Beans. J Refrig Technol 43(03):10–14

    Google Scholar 

  24. Zhao SS, Han XY, Liu B (2021) Mechanism analysis on the action of alternating magnetic field in inhibiting chilling injury of bananas. Jiangsu J Agric Sci 37(03):739–45

    Google Scholar 

  25. Tang J, Zhang H, Tian C et al (2020) Effects of different magnetic fields on the freezing parameters of cherry. J Food Eng 278:109949

    Article  Google Scholar 

  26. Pegg DE (2010) The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60(3 Suppl):S36-44

    Article  PubMed  Google Scholar 

  27. Pinisetty D, Huang C, Dong Q et al (2005) Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish. Xiphophorus Maculatus Cryobiol 50(3):250–263

    Article  CAS  Google Scholar 

  28. Jin Y, Yang N, Wu F et al (2015) Effect of Magnetic Field and Flowing Saline Solution on Salt Content in Garlic During Brining. Food Bioprocess Technol 8(12):2495–2499

    Article  CAS  Google Scholar 

  29. Mok JH, Choi W, Park SH et al (2015) Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. Int J Refrig 50:137–145

    Article  CAS  Google Scholar 

  30. Fikiin AK (1998) Ice Content Prediction Methods During Food Fkeezing: a Survey of the Eastern European Literature. J Food Eng 38:331–9

    Article  Google Scholar 

  31. Jiang Q, Zhang M, Mujumdar AS et al (2023) Effects of electric and magnetic field on freezing characteristics of gel model food. Food Res Int 166:112566

    Article  PubMed  CAS  Google Scholar 

  32. Xanthakis E, LE-Bail A, Havet M (2014) Freezing Combined with Electrical and Magnetic Disturbances. Emerg Technol Food Proc 563–79.

    Article  Google Scholar 

  33. Kiani H, Sun DW (2011) Water crystallization and its importance to freezing of foods: A review. Trends Food Sci Technol 22(8):407–26

    Article  CAS  Google Scholar 

  34. Dalvi-Isfahan M, Hamdami N, Xanthakis E et al (2017) Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J Food Eng 195:222–234

    Article  Google Scholar 

  35. Otero L, Rodriguez AC, Perez-Mateos M et al (2016) Effects of Magnetic Fields on Freezing: Application to Biological Products. Compr Rev Food Sci Food Saf 15(3):646–667

    Article  PubMed  Google Scholar 

  36. Kobayashi A, Golash HN, Kirschvink JL (2016) A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation. Cryobiology 72(3):216–224

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z, Tan Y, Yang N et al (2019) Influence of oscillating uniform magnetic field and iron supplementation on quality of freeze-thawed surimi. RSC Adv 9(57):33163–33169

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  38. Owada N, inventor (2007) Highly-efficient freezing apparatus and high-efficient freezing method. US Patent 7237400 B2. ABI CO LTD OWADA NORIO [JP]

  39. Owada N, Kurita S, inventors (2001) Super-quick freezing method and apparatus therefor. US Patent 6250087 B1

  40. Fujisaki Y, Amano M, inventors (2012) Core unit for refrigeration unit and refrigeration unit including the core unit. US Patent 8127559 B2

  41. Fennema O (1966) An over-all view of low temperature food preservation. Cryobiology 3:197–213

    Article  PubMed  CAS  Google Scholar 

  42. Otero L, Rodríguez AC, Sanz PD (2020) Effect of the frequency of weak oscillating magnetic fields on supercooling and freezing kinetics of pure water and 0.9% NaCl solutions. J Food Eng 273:109822

    Article  CAS  Google Scholar 

  43. Iwasaka M, Onishi M, Kurita S et al (2011) Effects of pulsed magnetic fields on the light scattering property of the freezing process of aqueous solutions. J Appl Phys 109–7

    Google Scholar 

  44. Russo Krauss I, Merlino A, Vergara A et al (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14(6):11643–91

    Article  PubMed  Google Scholar 

  45. Jiang PEI, Huo X, Liu B et al (2020) Ice Nucleation during Cell Cryopreservation: A Review. J Refrigeration 41(02):159–66

    Google Scholar 

  46. Karthika S, Radhakrishnan TK, Kalaichelvi P (2016) A Review of Classical and Nonclassical Nucleation Theories. Cryst Growth Des 16(11):6663–6681

    Article  CAS  Google Scholar 

  47. Zhu Z, Zhou Q, Sun DW (2019) Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends Food Sci Technol 90:13–25

    Article  CAS  Google Scholar 

  48. Huebinger J, Han HM, Hofnagel O et al (2016) Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization. Biophys J 110(4):840–849

    Article  PubMed  CAS  Google Scholar 

  49. Xin-Feng C, Min Z, Benu A et al (2014) Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. Int J Refrigeration 44:49–55

    Article  Google Scholar 

  50. Kaur M, Kumar M (2019) An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. Food Rev Intl 36(8):761–780

    Article  Google Scholar 

  51. Delgado AE, Sun DW (2001) Heat and mass transfer models for predicting freezing processes - a review. J Food Eng 47:157–74

    Article  Google Scholar 

  52. Pang XF (2006) The conductivity properties of protons in ice and mechanism of magnetization of liquid water. Eur Phys J B - Condens Matter Complex Syst 49(1):5–23

    Article  CAS  Google Scholar 

  53. Pang X, Deng B (2008) Investigation of changes in properties of water under the action of a magnetic field. Sci China, Ser G 51(11):1621–1632

    Article  CAS  Google Scholar 

  54. Pang XF, Deng B (2008) The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Phys B: Condens Matter 403(19–20):3571–7

    Article  ADS  CAS  Google Scholar 

  55. Pang XF, Deng BO, Tang BO (2012) Influences of Magnetic Field on Macroscopic Properties of Water. Modern Phys Lett B 26(11)

    Article  Google Scholar 

  56. Pang XF, Shen GF (2023) The Changes of Physical Properties of Water Arising from the Magnetic Field and Its Mechanism. Modern Phys Lett B 27(3)

    Google Scholar 

  57. Szcześ A, Chibowski E, Hołysz L et al (2011) Effects of static magnetic field on water at kinetic condition. Chem Eng Process 50(1):124–127

    Article  Google Scholar 

  58. Holysz L, Szczes A, Chibowski E (2007) Effects of a static magnetic field on water and electrolyte solutions. J Colloid Interface Sci 316(2):996–1002

    Article  PubMed  ADS  CAS  Google Scholar 

  59. Han X, Peng Y, Ma Z (2016) Effect of magnetic field on optical features of water and KCl solutions. Optik 127(16):6371–6376

    Article  ADS  CAS  Google Scholar 

  60. Takahashi T, Ohkubo T, Ikeda Y (2006) Montmorillonite alignment induced by magnetic field: evidence based on the diffusion anisotropy of water molecules. J Colloid Interface Sci 299(1):198–203

    Article  PubMed  ADS  CAS  Google Scholar 

  61. Mihaela Răcuciu HO (2019) Extremely low frequency (50hz) magnetic field influences physico-chemical properties of water. Environ Eng Manag J 18(1):1987–94

    Article  Google Scholar 

  62. Dueñas JA, Weiland C, Núñez MA et al (2020) Effect of low intensity static magnetic field on purified water in stationary condition: Ultraviolet absorbance and contact angle experimental studies. J Appl Phys 127(13)

    Article  Google Scholar 

  63. Toledo EJL, Ramalho TC, Magriotis ZM (2008) Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. J Mol Struct 888(1–3):409–415

    Article  ADS  CAS  Google Scholar 

  64. Cai R, Yang H, He J et al (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct 938(1–3):15–19

    Article  ADS  CAS  Google Scholar 

  65. Al-Douri Y, Hassan SM, Batoo KM et al (2021) Surface tension under magnetic field effect for nanoscaled water. Eur Phys J Plus 136(3)

    Article  CAS  Google Scholar 

  66. Wang Y, Zhang B, Gong Z et al (2013) The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. J Mol Struct 1052:102–104

    Article  ADS  CAS  Google Scholar 

  67. Zhou KX, Lu GW, Zhou QC et al (2000) Monte Carlo simulation of liquid water in a magnetic field. J Appl Phys 88(4):1802–1805

    Article  ADS  CAS  Google Scholar 

  68. Dueñas JA, Weiland C, García-Selfa I et al (2021) Magnetic influence on water evaporation rate: an empirical triadic model. J Magn Magnet Mater 539

    Google Scholar 

  69. Wang Y, Wei H, Li Z (2018) Effect of magnetic field on the physical properties of water. Result Phys 8:262–267

    Article  ADS  Google Scholar 

  70. Seyfi A, Afzalzadeh R, Hajnorouzi A (2017) Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chem Eng Processing - Proc Intensif 120:195–200

    Article  CAS  Google Scholar 

  71. Poulose S, Alvarez-Braña Y, Basabel-Desmonts L et al (2023) Magnetic Field Enhancement of Water Evaporation in Confined Spaces. IEEE Magnet Lett 14:1–5

    Article  Google Scholar 

  72. Hu H, Hou H, Wang B (2012) Molecular Dynamics Simulations of Ice Growth from Supercooled Water When Both Electric and Magnetic Fields Are Applied. J Phys Chem C 116(37):19773–19780

    Article  CAS  Google Scholar 

  73. Chang KT, Weng CI (2006) The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J Appl Phys 100(4)

    Article  Google Scholar 

  74. Jin S, Sun S, Jiang X et al (2020) Effect of static magnetic field on the freezing process of deionized water and 0.9% NaCl solution. J Food Proc Preserv  44(9)

    Google Scholar 

  75. Otero L, Rodríguez AC, Sanz PD (2018) Effects of static magnetic fields on supercooling and freezing kinetics of pure water and 0.9% NaCl solutions. J Food Eng 217:34–42

    Article  CAS  Google Scholar 

  76. Zhao H, Zhang F, Hu H et al (2017) Experimental study on freezing of liquids under static magnetic field. Chin J Chem Eng 25(9):1288–1293

    Article  CAS  Google Scholar 

  77. Zipeng Z, Hongxia Z, Jitian H (2012) Supercooling and crystallization of water under DC magnetic fields. CIESC Journal 63(63):1405–1408

    Google Scholar 

  78. Zhan X, Zhu Z, Sun DW (2019) Effects of extremely low frequency electromagnetic field on the freezing processes of two liquid systems. Lwt 103:212–21

    Article  CAS  Google Scholar 

  79. Kang T, You Y, Hoptowit R et al (2021) Effect of an oscillating magnetic field on the inhibition of ice nucleation and its application for supercooling preservation of fresh-cut mango slices. J Food Eng 300

    CAS  Google Scholar 

  80. Zhang L, Yang Z, Deng Q (2021) Effects of pulsed magnetic field on freezing kinetics and physical properties of water and cucumber tissue fluid. J Food Eng 288

    Google Scholar 

  81. Zhou J, Dong X, Kong B et al (2023) Effects of magnetic field-assisted immersion freezing at different magnetic field intensities on the muscle quality of golden pompano (Trachinotus ovatus). Food Chem 407

    PubMed  CAS  Google Scholar 

  82. Arteaga H,Carolina De Sousa Silva A, Eduardo De Campos Tambelli C, et al (2022) Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach Lwt 169

    Google Scholar 

  83. Panayampadan AS, Shafiq Alam M, Aslam R et al (2022) Effects of alternating magnetic field on freezing of minimally processed guava Lwt 163

    CAS  Google Scholar 

  84. Otero L, Pozo A (2022) Effects of the application of static magnetic fields during potato freezing. J Food Eng 316

    CAS  Google Scholar 

  85. Lin H, Zhao S, Han X et al (2022) Effect of static magnetic field extended supercooling preservation on beef quality. Food Chem 370:131264

    Article  PubMed  CAS  Google Scholar 

  86. James C, Purnell G, James SJ (2015) A Review of Novel and Innovative Food Freezing Technologies. Food Bioprocess Technol 8(8):1616–1634

    Article  CAS  Google Scholar 

  87. Tian Y, Sun DW, Xu L et al (2022) Bio-inspired eutectogels enabled by binary natural deep eutectic solvents (NADESs): Interfacial anti-frosting, freezing-tolerance, and mechanisms. Food Hydrocoll 128

    Google Scholar 

  88. Kobayashi A, Kirschvink JL (2014) A ferromagnetic model for the action of electric and magnetic fields in cryopreservation. Cryobiology 68(2):163–165

    Article  PubMed  CAS  Google Scholar 

  89. Kobayashi A, Horikawa M, Kirschvink JL et al (2018) Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications. Proc Natl Acad Sci U S A 115(21):5383–5388

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  90. Inaba H, Saitou T, Tozaki KI et al (2004) Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J Appl Phys 96(11):6127–32

    Article  ADS  CAS  Google Scholar 

  91. Maheshwary S, Nitin P, Narayanasami S et al (2001) Structure and Stability of Water Clusters (H2O)n, n = 8–20: An Ab Initio Investigation. J Phys Chem A 105:10525–37

    Article  CAS  Google Scholar 

  92. Su N, Wu CF (2003) Effect of magnetic field treated water on mortar and concrete containing fly ash. Cement Concr Compos 25(7):681–8

    Article  CAS  Google Scholar 

  93. McKellar A, Paterson J, Pham QT (2009) A comparison of two models for stresses and strains during food freezing. J Food Eng 95(1):142–150

    Article  Google Scholar 

  94. Miyawaki O, Nishino H (2016) Kinetic analysis of freeze denaturation of soyprotein by a generalized theoretical model for freeze-acceleration reaction. J Food Eng 190:109–115

    Article  CAS  Google Scholar 

  95. Guiné RPF, Matos S (2018) Gonçalves FJ et al Evaluation of phenolic compounds and antioxidant activity of blueberries and modelization by artificial neural networks. Int J Fruit Sci 18(2):199–214

    Article  Google Scholar 

  96. Kang T, You Y, Jun S (2020) Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Sci Biotechnol 29(3):303–321

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tan Y, Jin Y, Yang N et al (2019) Influence of uniform magnetic field on physicochemical properties of freeze-thawed avocado puree. RSC Adv 9(68):39595–39603

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  98. Kang T, Her J-Y, Hoptowit R et al (2019) Investigation of the Effect of Oscillating Magnetic Field on Fresh-Cut Pineapple and Agar Gel as a Model Food During Supercooling Preservation. Trans ASABE 62(5):1155–61

    Article  CAS  Google Scholar 

  99. Lin H, He X, Liu C et al (2022) Static magnetic field-assisted supercooling preservation enhances water-holding capacity of beef during subzero storage. Innov Food Sci Emerg Technol 80:103106

    Article  Google Scholar 

  100. You Y, Li M, Kang T et al (2021) Application of Supercooling for the Enhanced Shelf Life of Asparagus (Asparagus officinalis L). Foods 10(10)

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kaur M, Kumar M, Sethi V (2022) Maintaining the freeze thawing characteristics of tomato through development and evaluation of magnetic field-assisted freezing system. J Food Proc Preserv 46(9)

    Article  Google Scholar 

  102. Kang T, Shafel T, Lee D et al (2020) Quality Retention of Fresh Tuna Stored Using Supercooling Technology. Foods 9(10)

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rodríguez AC, Pérez-Mateos M, Careche M et al (2020) Evaluation of the effects of weak oscillating magnetic fields applied during freezing on systems of different complexity. Int J Food Eng 16(4)

    Article  Google Scholar 

  104. Tang J, Shao S, Tian C (2019) Effects of the magnetic field on the freezing parameters of the pork. Int J Refrig 107:31–38

    Article  Google Scholar 

  105. Zhou H, Jin Y, Hong T et al (2022) Effect of static magnetic field on the quality of frozen bread dough. Lwt 154(1)

    Google Scholar 

  106. Jiang Q, Zhang M, Mujumdar AS et al (2022) Comparative freezing study of broccoli and cauliflower: Effects of electrostatic field and static magnetic field. Food Chem 397:133751

    Article  PubMed  CAS  Google Scholar 

  107. Leng D, Zhang H, Tian C et al (2022) The effect of magnetic field on the quality of channel catfish under two different freezing temperatures. Int J Refrig 140:49–56

    Article  CAS  Google Scholar 

  108. Purnell G, James C, James SJ (2017) The Effects of Applying Oscillating Magnetic Fields During the Freezing of Apple and Potato. Food Bioprocess Technol 10(12):2113–2122

    Article  Google Scholar 

  109. Vicent V, Ndoye FT, Verboven P et al (2020) Modeling ice recrystallization in frozen carrot tissue during storage under dynamic temperature conditions. J Food Eng 278(1)

    Google Scholar 

  110. Qiao J, Zhang M, Fang Z et al (2023) Effect of static magnetic field assisted freezing on the product quality of Korla fragrant pear. J Food Process Eng 46(10)

    Article  Google Scholar 

  111. Gan S, Zhang M, Jiang Q (2023) Pork Freezing and Quality Improvement: The Effect of Immersion Freezing Assisted By Magnetic Field. Food Bioproc Technol

    Google Scholar 

  112. Leng D, Zhang H, Tian C et al (2023) Static magnetic field assisted freezing of four kinds of fruits and vegetables: Micro and macro effects. Int J Refrig 146:118–125

    Article  Google Scholar 

  113. Jha PK, Sadot M, Vino SA et al (2017) A review on effect of DC voltage on crystallization process in food systems. Innov Food Sci Emerg Technol 42:204–219

    Article  CAS  Google Scholar 

  114. Stan CA, Tang SK, Bishop KJ et al (2011) Externally applied electric fields up to 1.6 x 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water. J Phys Chem B 115(5):1089–97

    Article  PubMed  CAS  Google Scholar 

  115. Orlowska M, Havet M, Le-Bail A (2009) Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int 42(7):879–884

    Article  Google Scholar 

  116. Saban KV, Thomas J, Varughese PA et al (2002) Thermodynamics of Crystal Nucleation in an External Electric Field. Crystal Res Technol 37(11):1188–99

    Article  CAS  Google Scholar 

  117. Jha P, Xanthakis E, Jury V et al (2017) An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals 7(10)

    Article  Google Scholar 

  118. Tagami M, Hamai M, Mogi I et al (1999) Solidification of levitating water in a gradient strong magnetic field. J Cryst Growth 203:594–598

    Article  ADS  CAS  Google Scholar 

  119. Qin Y, Dong B, Li W (2020) Experimental study of the frosting characteristic of water on a cold surface in the magnetic field. Exp Ther Fluid Sci 114

    Google Scholar 

  120. Jiang T, Jahangir MM, Jiang Z et al (2010) Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biol Technol 56(3):209–215

    Article  CAS  Google Scholar 

  121. Yang Z, Zhang L, Zhao S et al (2020) Comparison study of static and alternating magnetic field treatments on the quality preservation effect of cherry tomato at low temperature. J Food Proc Eng 43(9)

    Article  Google Scholar 

  122. Kang T, Hoptowit R, Jun S (2020) Effects of an oscillating magnetic field on ice nucleation in aqueous iron‐oxide nanoparticle dispersions during supercooling and preservation of beef as a food application. J Food Process Eng 43(11)

    Article  Google Scholar 

  123. Wang T, Jin Y, Yang N et al (2022) Effect of magnetic field with different dimensions on quality of avocado puree during frozen storage. Int J Food Sci Technol 57(3):1698–1707

    Article  CAS  Google Scholar 

  124. Toscano S, Rizzo V, Licciardello F et al (2021) Packaging Solutions to Extend the Shelf Life of Green Asparagus (Asparagus officinalis L.) “Vegalim.” Foods 10(2)

    Article  PubMed  PubMed Central  Google Scholar 

  125. Horbowicz M, Kosson R, Grzesiuk A et al (2008) Anthocyanins of Fruits and Vegetables - Their Occurrence, Analysis and Role in Human Nutrition. J Fruit Ornamental Plant Res 68(1):5–22

    Article  Google Scholar 

  126. Palma-Orozco G, Sampedro JG, Ortiz-Moreno A et al (2012) In situ inactivation of polyphenol oxidase in mamey fruit (Pouteria sapota) by microwave treatment. J Food Sci 77(4):C359–C365

    Article  PubMed  CAS  Google Scholar 

  127. Ospina S, Ortiz DL, Orrego CE (2019) Enzymatic Browning and Color Evolution in Frozen Storage of Two Kinds of Minimally Processed Avocado Puree. Int J Food Eng 15:11–12

    Article  Google Scholar 

  128. Dao-Liang Y, Yu-Qi G, Xue-Ming Z et al (2009) Effects of electromagnetic fields exposure on rapid micropropagation of beach plum (Prunus maritima). Ecol Eng 35(4):597–601

    Article  Google Scholar 

  129. Xia M, Chen Y, Ma J et al (2020) Low frequency magnetic fields modification on hydrogen peroxide oxidized myoglobin-isolate and mechanisms underlying the chain reaction process. Food Chem 312:126069

    Article  PubMed  CAS  Google Scholar 

  130. Choi YS, Ku SK, Jeong JY et al (2015) Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage. Korean J Food Sci Anim Resour 35(1):27–34

    Article  PubMed  PubMed Central  Google Scholar 

  131. Aslam R, Alam MS, Kaur J et al (2021) Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud

    PubMed  Google Scholar 

  132. Lin CY, Wei PL, Chang WJ et al (2013) Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency–a study on human erythrocytes. PLoS ONE 8(3):e58988

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  133. Lin PY, Yang YC, Hung SH et al (2013) Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field. Cryobiology 66(3):256–260

    Article  PubMed  Google Scholar 

  134. Lin CY, Chang WJ, Lee SY et al (2013) Influence of a static magnetic field on the slow freezing of human erythrocytes. Int J Radiat Biol 89(1):51–6

    Article  PubMed  CAS  Google Scholar 

  135. Phothiset S, Charoenrein S (2014) Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. J Sci Food Agric 94(2):189–196

    Article  PubMed  CAS  Google Scholar 

  136. Wei H, Fu R, Lin X et al (2021) Effect of magnetic field‐assisted freezing on water migration, fractal dimension, texture, and other quality changes in tilapia. J Food Process Preserv, 45(11).

    Article  Google Scholar 

  137. Sun Q, Zhang H, Yang X, et al. Insight into muscle quality of white shrimp (Litopenaeus vannamei) frozen with static magnetic-assisted freezing at different intensities[J]. Food Chemistry: X, 2023, 17. https://doi.org/10.1016/j.fochx.2022.100518

  138. Wei H, Luo K, Fu R et al (2022) Impact of the magnetic field-assisted freezing on the moisture content, water migration degree, microstructure, fractal dimension, and the quality of the frozen tilapia. Food Sci Nutr 10(1):122–132

    Article  PubMed  Google Scholar 

  139. Owada N, Kurita S, inventors (2001) Super-quick freezing method and apparatus therefor. US Patent 6250087 B1

  140. Qian J, Yan G, Huo S et al (2021) Effects of pulsed magnetic field on microbial and enzymic inactivation and quality attributes of orange juice. J Food Process Preserv 45(6)

    Article  Google Scholar 

  141. Mahathaininwong N, Chucheep T, Thitithanakul S et al (2019) Effect of static magnetic field on ripening of Thai cavendish bananas. J Phys Conf Ser 1380(1)

    Article  CAS  Google Scholar 

  142. Jamil Y, Perveen R, Ashraf M et al (2013) He–Ne laser-induced changes in germination, thermodynamic parameters, internal energy, enzyme activities and physiological attributes of wheat during germination and early growth. Laser Phys Lett 10(4)

    Article  CAS  Google Scholar 

  143. Baghel L, Kataria S, Guruprasad KN (2016) Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics 37(7):455–470

    Article  PubMed  CAS  Google Scholar 

  144. Rajendra P, Sujatha Nayak H, Sashidhar RB et al (2009) Effects of Power Frequency Electromagnetic Fields on Growth of GerminatingVicia fabaL., the Broad Bean. Electromagnet Biol Med 24(1):39–54

    Article  Google Scholar 

  145. Filipic J, Kraigher B, Tepus B et al (2012) Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120:225–232

    Article  PubMed  CAS  Google Scholar 

  146. Morono Y, Terada T, Yamamoto Y et al (2015) Intact preservation of environmental samples by freezing under an alternating magnetic field. Environ Microbiol Rep 7(2):243–251

    Article  PubMed  CAS  Google Scholar 

  147. Vashisth A, Nagarajan S (2008) Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29(7):571–8

    Article  PubMed  Google Scholar 

  148. Vashisth A, Nagarajan S (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol 167(2):149–156

    Article  PubMed  CAS  Google Scholar 

  149. Vashisth A, Joshi DK (2017) Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 38(2):151–157

    Article  PubMed  CAS  Google Scholar 

  150. Zareei E, Zaare-Nahandi F, Oustan S et al (2019) Effects of magnetic solutions on some biochemical properties and production of some phenolic compounds in grapevine (Vitis vinifera L.). Scientia Horticulturae 253:217–26

    Article  CAS  Google Scholar 

  151. Dantas AM, Mafaldo IM, Oliveira PML et al (2019) Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem 274:202–214

    Article  PubMed  CAS  Google Scholar 

  152. Meng-Xiang G, Wen-Hui W, Feng-Wei Y et al (2009) Effects of Alternating Magnetic Field on Reaction Kinetics of Apple Polyphenol-oxidase. Food Science 30:60–63

    Google Scholar 

  153. Haile MA, Huang Liurong INZC (2010) Inactivation of polyphenol oxidase by high-intensity pulsed magnetic field and kinetic model. Transactions of the CSAE 26(Supp.1)

    Google Scholar 

  154. Serdyukov YA, Novitskii YI (2012) Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings. Russ J Plant Physiol 60(1):69–76

    Article  Google Scholar 

  155. Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217(4):658–667

    Article  PubMed  CAS  Google Scholar 

  156. Chevalier LM, Rioux LE, Angers P et al (2017) Low-Temperature Blanching as a Tool to Modulate the Structure of Pectin in Blueberry Purees. J Food Sci 82(9):2070–2077

    Article  PubMed  CAS  Google Scholar 

  157. Ma H, Huang L, Zhu C (2011) The Effect of Pulsed Magnetic Field on Horseradish Peroxidase. J Food Process Eng 34(5):1609–1622

    Article  CAS  Google Scholar 

  158. Zhang L, Yang Z, Zhao S et al (2020) Effect of Combined Pulsed Magnetic Field and Cold Water Shock Treatment on the Preservation of Cucumbers During Postharvest Storage. Food Bioprocess Technol 13(4):732–738

    Article  CAS  Google Scholar 

  159. Anastasiou E, Lorentz KO, Stein GJ et al (2014) Prehistoric schistosomiasis parasite found in the Middle East. Lancet Infect Dis 14(7):553–554

    Article  PubMed  Google Scholar 

  160. Shine MB, Guruprasad KN (2011) Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol Plant 34(1):255–265

    Article  Google Scholar 

  161. Zhao S, Yang Z, Zhang L et al (2018) Effect of combined static magnetic field and cold water shock treatment on the physicochemical properties of cucumbers. J Food Eng 217:24–33

    Article  CAS  Google Scholar 

  162. Zhao S, Han X, Liu B et al (2021) Different effects of continuous and intermittent alternative magnetic field on inhibiting chilling injury of bananas. J Food Process Eng 44(11)

    Article  Google Scholar 

  163. Qian J, Chen S, Huo S et al (2020) Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juice. J Food Sci Technol 58(8):2982–2991

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liu DK, Xu CC, Guo CX et al (2020) Sub-zero temperature preservation of fruits and vegetables: A review. J Food Eng 275

    Google Scholar 

  165. Lv L, Jin Y, Yang N et al (2022) Effect of alternating magnetic field on the quality of fresh-cut apples in cold storage. Int J Food Sci Technol 57(8):5429–5438

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (No.52276094); Postgraduate Scientific Research Innovation Project of Hunan Province (No.CX20230760) and Scientific Innovation Fund for Post-graduates of Central South University of Forestry and Technology (No.2023CX01019).

Author information

Authors and Affiliations

Authors

Contributions

Jianwen Ruan: methodology, writing, editing. Hanqing Wang: methodology and editing. Jinping Zhao: visualizated and investigating. Dan Li: editing and supervision. Hongbo Yang: preparing figures and tables.

Corresponding authors

Correspondence to Hanqing Wang or Jinping Zhao.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, J., Wang, H., Zhao, J. et al. Effect of Magnetic Field on Frozen Food Quality Characteristics. Food Eng Rev (2024). https://doi.org/10.1007/s12393-024-09366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-024-09366-6

Keywords

Navigation