Skip to main content
Log in

A Review of Novel and Innovative Food Freezing Technologies

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Freezing is a very well-established food preservation process that produces high quality nutritious foods with a long storage life. However, freezing is not suitable for all foods, and freezing can cause physical and chemical changes in some foods that are perceived as reducing the quality of either the thawed material or the final product. This paper reviews the many innovative freezing processes that are currently being researched and developed throughout the world to improve freezing conditions and product quality. Some innovative freezing processes (impingement and hydrofluidisation) are essentially improvements of existing methods (air blast and immersion, respectively) to produce far higher surface heat transfer rates than previous systems and thus improve product quality through rapid freezing. In these cases, the advantages may depend on the size of the product, since the poor thermal conductivity of many foods limits the rate of cooling in large objects rather than the heat transfer between the heat transfer medium and the product. Other processes (pressure shift, magnetic resonance, electrostatic, microwave, radiofrequency, and ultrasound) are adjuncts to existing freezing systems that aim to improve product quality through controlling the way that ice is formed in the food during freezing. Another alternative is to change the properties of the food itself to control how ice is formed during freezing (such as in dehydrofreezing and the use of antifreeze and ice-nucleation proteins).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedini, S., Kaku, M., Kawata, T., Koseki, H., Kojima, S., Sumi, H., Motokawa, M., Fujita, T., Ohtani, J., Ohwada, N., & Tanne, K. (2011). Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology, 62(3), 181–187.

    CAS  Google Scholar 

  • Agnelli, M. E., & Mascheroni, R. H. (2002). Quality evaluation of foodstuffs frozen in a cryomechanical freezer. Journal of Food Engineering, 52(3), 257–263.

    Google Scholar 

  • Alizadeh, E., Chapleau, N., de Lamballerie, M., & Le-Bail, A. (2007a). Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innovative Food Science & Emerging Technologies, 8(4), 493–499.

    Google Scholar 

  • Alizadeh, E., Chapleau, N., de Lamballerie, M., & Le-Bail, A. (2007b). Effect of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. Journal of Food Science, 72(5), E279–E284.

    CAS  Google Scholar 

  • Alizadeh, E., Chapleau, N., de-Lamballerie, M., & Le-Bail, A. (2009). Impact of freezing process on salt diffusivity of seafood: Application to salmon (Salmo salar) using conventional and pressure shift freezing. Food and Bioprocess Technology, 2(3), 257–262.

    CAS  Google Scholar 

  • Anese, M., Manzocco, L., Panozzo, A., Beraldo, P., Foschia, M., & Nicoli, M. C. (2012). Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Research International, 46(1), 50–54.

    Google Scholar 

  • Anmella, J. M. N. (2010). Process for the production of frozen foods, particularly vegetables or fruits. US Patent 2010/0143564A1.

  • Anon. (2012). Nice Fruit, frozen fruit and vegetables. http://www.upc.edu/saladepremsa/al-dia/mes-noticies/nice-fruit-frozen-fruit-and-vegetables?set_language=en. Accessed 6 November 2014.

  • Anon. (2013). Bonduelle signs commercial royalty-bearing license with EnWave. Refrigerated & Frozen Foods. http://www.refrigeratedfrozenfood.com/articles/87491. Accessed 6 February 2014.

  • Anon. (2014). Dehydration technology for discrete food pieces. EnWave Corporation. http://www.enwave.net/nutrarev.php. Accessed 5 February 2014.

  • Ben Ammar, J., Lanoisellé, J.-L., Lebovka, N. I., Hecke, E., & Vorobiev, E. (2010). Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophysics, 5(3), 247–254.

    Google Scholar 

  • Castro, S. M., Van Loey, A., Saraiva, J. A., Smout, C., & Hendrickx, M. (2007). Effect of temperature, pressure and calcium soaking pre-treatments and pressure shift freezing on the texture and texture evolution of frozen green bell peppers (Capsicum annuum). European Food Research and Technology, 226(1–2), 33–43.

    CAS  Google Scholar 

  • Cheftel, J. C., Levy, J., & Dumay, E. (2000). Pressure-assisted freezing and thawing: principles and potential applications. Food Reviews International, 16(4), 453–483.

    CAS  Google Scholar 

  • Cheftel, J. C., Thiebaud, M., & Dumay, E. (2002). Pressure-assisted freezing and thawing of foods: a review of recent studies. International Journal of High Pressure Research, 22(3–4), 601–611.

    Google Scholar 

  • Cheng, X., Zhang, M., Adhikari, B., Islam, M. N., & Xu, B. (2014). Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2014.04.017.

    Google Scholar 

  • Clarke, C. J., Buckley, S. L., & Lindner, N. (2002). Ice structuring proteins—a new name for antifreeze proteins. CryoLetters, 23, 89–92.

    CAS  Google Scholar 

  • Comandini, P., Blanda, G., Soto-Caballero, M. C., Sala, V., Tylewicz, U., Mujica-Paz, H., Valdez Fragoso, A., & Gallina Toschi, T. (2013). Effects of power ultrasound on immersion freezing parameters of potatoes. Innovative Food Science & Emerging Technologies, 18, 120–125.

    Google Scholar 

  • Crivelli, G., Torregiani, D., Bertolo, G., Forni, E., & Maestrelli, A. (1987a). Research on dehydrofreezing of fruit. Part 2: Utilization for the preparation of fruit salad. XVIIth International Congress of Refrigeration, IIR, Paris, C, 468–471.

  • Crivelli, G., Torregiani, D., Bertolo, G., Forni, E., & Maestrelli, A. (1987b). Research on dehydrofreezing of fruit. Part 1: Utilization for the preparation of fruit salad. Annales Istituto Sperimentale Valorizzazione Tecnologica dei Prodotti Agricoli, 18, 63–67.

    Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2009). The response of watercress (Nasturtium officinale) to vacuum impregnation: Effect of an antifreeze protein type I. Journal of Food Engineering, 95, 339–345.

    Google Scholar 

  • Del Valle, J. M., Cuadros, T. R. M., & Aguilera, J. M. (1998). Glass transitions and shrinkage during drying and storage of osmosed apple pieces. Food Research International, 31, 191–204.

    Google Scholar 

  • Delgado, A., & Sun, D. W. (2012). Ultrasound-accelerated freezing. In D. W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 645–666). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2(3), 263–270.

    Google Scholar 

  • Durance, T. (2013). EnWave signs commercial royalty-bearing license with Bonduelle. EnWave Corporation. http://www.enwave.net/news.php?id=478. Accessed 5 February 2014.

  • Feeney, R. E., & Yeh, Y. (1998). Antifreeze proteins: Current status and possible food uses. Trends in Food Science & Technology, 9(3), 102–106.

    CAS  Google Scholar 

  • Fernandez, P. P., Otero, L., Guignon, B., & Sanz, P. D. (2006a). High-pressure shift freezing versus high-pressure assisted freezing: Effects on the microstructure of a food model. Food Hydrocolloids, 20(4), 510–522.

    CAS  Google Scholar 

  • Fernandez, P. P., Prestamo, G., Otero, L., & Sanz, P. D. (2006b). Assessment of cell damage in high-pressure-shift frozen broccoli: Comparison with market samples. European Food Research and Technology, 224(1), 101–107.

    CAS  Google Scholar 

  • Fernández-Martín, F., Otero, L., Solas, M. T., & Sanz, P. D. (2000). Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. Journal of Food Science, 65, 1002–1008.

    Google Scholar 

  • Fikiin, A. G. (1992). New method and fluidized water system for intensive chilling and freezing of fish. Food Control (Oxford), 3(3), 153–160.

    Google Scholar 

  • Fikiin, A. G. (1994). Quick freezing of vegetables by hydrofluidisation. In New Applications of Refrigeration to Fruit and Vegetables Processing, Proceedings of IIR Conference, Istanbul (Turkey), Refrigeration Science and Technology, International Institute of Refrigeration, 1994–3, 85–91.

  • Fikiin, K. (2003). Novelties of Food Freezing Research in Europe and Beyond. Flair-Flow 4 Synthesis Report. SMEs No. 10, Project No: QLK1-CT-2000-00040.

  • Fikiin K. A., & Fikiin A. G. (1998). Individual quick freezing of foods by hydrofluidisation and pumpable ice slurries. In Advances in the Refrigeration Systems, Food Technologies and Cold Chain, Ed.: K. Fikiin, Proceedings of IIR Conference, Sofia (Bulgaria), Refrigeration Science and Technology, International Institute of Refrigeration, 1998–6, 319–326.

  • Fikiin, A. G., & Pham, V. H. (1985). System for examination of heat transfer regimes during hydrorefrigeration of foodstuffs. Invention Certificate No. 39749, Bulgarian Patent Agency INRA.

  • Fikiin, K., Tsvetkov, O., Laptev, Yu., Fikiin, A., & Kolodyaznaya, V. (2003). Thermophysical and engineering issues of the immersion freezing of fruits in ice slurries based on sugar-ethanol aqueous solution. Ecolibrium, August, 10–15.

  • Forni, E., Sormani, A., Scalise, S., & Torreggiani, D. (1997). The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Research International, 30, 87–94.

    CAS  Google Scholar 

  • Gareth, J. (Ed.). (1992). Current trends in sonochemistry. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Giannakourou, M. C., & Taoukis, P. S. (2003). Stability of dehydrofrozen green peas pretreated with nonconventonal osmotic agents. Journal of Food Science, 68, 2002–2010.

    CAS  Google Scholar 

  • Gómez, F., & Sjöholm, I. (2004). Applying biochemical and physiological principles in the industrial freezing of vegetables: a case study on carrots. Trends in Food Science & Technology, 15, 39–43.

    Google Scholar 

  • Góral, D., & Kluza, F. (2006). Physical changes of vegetables during freezing by conventional and impingement methods. Acta Agrophysica, 7(1), 59–71.

    Google Scholar 

  • Góral, D., & Kluza, F. (2009). Cutting test application to general assessment of vegetable texture changes caused by freezing. Journal of Food Engineering, 95(2), 346–351.

    Google Scholar 

  • Góral, D., & Kluza, F. (2012). Heat transfer coefficient in impingement fluidization freezing of vegetables and its prediction. International Journal of Refrigeration, 35, 871–879.

    Google Scholar 

  • Griffith, M., & Ewart, K. V. (1995). Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances, 13(3), 375–402.

    CAS  Google Scholar 

  • Hansen, E., Trinderup, R. A., Hviid, M., Darre, M., & Skibsted, L. H. (2003). Thaw drip loss and protein characterization of drip from air-frozen, cryogen-frozen, and pressure-shift-frozen pork longissimus dorsi in relation to ice crystal size. European Food Research and Technology, 218(1), 2–6.

    CAS  Google Scholar 

  • Hanyu, Y., Ichikawa, M., & Matsumoto, G. (1992). An improved cryofixation method—Cryoquenching of small tissue blocks during microwave irradiation. Journal of Microscopy (Oxford), 165, 255–271.

    CAS  Google Scholar 

  • Hassas-Roudsari, M., & Goff, H. D. (2012). Ice structuring proteins from plants: Mechanism of action and food application. Food Research International, 46, 425–436.

    CAS  Google Scholar 

  • Ho, S. Y. (2004). A turbulent conjugate heat-transfer model for freezing of food products. Journal of Food Science, 69(5), E224–E231.

    CAS  Google Scholar 

  • Howard, L. B., & Campbell, H. (1946). Dehydrofreezing—a new way of preserving food. Food Industries, 18, 674–676.

    Google Scholar 

  • Hu, S.-Q., Liu, G., Li, L., Li, Z.-X., & Hou, Y. (2013). An improvement in the immersion freezing process for frozen dough via ultrasound irradiation. Journal of Food Engineering, 114, 22–28.

    Google Scholar 

  • Huxsoll, C. C. (1982). Reducing the refrigeration load by partial concentration of foods prior to freezing. Food Technology, 36(5), 98–102.

    Google Scholar 

  • Islam, M. N., Zhang, M., Adhikari, B., Xinfeng, C., & Xu, B.-G. (2014). The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2014.02.012.

    Google Scholar 

  • Jackson, T. H., Ungan, A., Critser, J. K., & Gao, D. Y. (1997). Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation. Cryobiology, 34(4), 363–372.

    CAS  Google Scholar 

  • Jaczynski, J., Tahergorabi, R., Hunt, A. L., & Park, J. W. (2012). Safety and quality of frozen aquatic food products. In D. W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 343–385). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Jafari, M., & Alavi, P. (2008). Analysis of food freezing by slot jet impingement. Journal of Applied Sciences, 8(7), 1188–1196.

    Google Scholar 

  • Jalté, M., Lanoiselle, J. L., Lebovka, N. I., & Vorobiev, E. (2009). Freezing of potato tissue pre-treated by pulsed electric fields. LWT- Food Science and Technology, 42, 576–580.

    Google Scholar 

  • James, S. J., & James, C. (2012). Innovative freezing technologies for foods. New Food, 15(4), 21–24.

    Google Scholar 

  • James, C., Purnell, G., & James, S. J. (2014). A critical review of dehydrofreezing of fruits and vegetables. Food and Bioprocess Technology, 7, 1219–1234.

    Google Scholar 

  • James, C., Reitz, B. G., & James, S. J. (2015). The freezing characteristics of garlic bulbs (Allium sativum L.) frozen conventionally or with the assistance of an oscillating weak magnetic field. Food and Bioprocess Technology, 8(3), 702–708.

    Google Scholar 

  • Jul, M. (1984). The Quality of Frozen Foods. Orlando: Academic.

    Google Scholar 

  • Kaku, M., Kamada, H., Kawata, T., Koseki, H., Abedini, S., Kojima, S., Motokawa, M., Fujita, T., Ohtani, J., Tsuka, N., Matsuda, Y., Sunagawa, H., Hernandes, R. A. M., Ohwada, N., & Tanne, K. (2010). Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 61(1), 73–78.

    CAS  Google Scholar 

  • Kaku, M., Kawata, T., Abedini, S., Koseki, H., Kojima, S., Sumi, H., Shikata, H., Motokawa, M., Fujita, T., Ohtani, J., Ohwada, N., Kurita, M., & Tanne, K. (2012). Electric and magnetic fields in cryopreservation: a response. Cryobiology, 64(3), 304–305.

    Google Scholar 

  • Kiani, H., Zhang, Z., Delgado, A., & Sun, D.-W. (2011). Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Research International, 44(9), 2915–2921.

    CAS  Google Scholar 

  • Kiani, H., Sun, D.-W., & Zhang, Z. (2012a). The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. Ultrasonics Sonochemistry, 19, 1238–1245.

    CAS  Google Scholar 

  • Kiani, H., Sun, D. W., Zhang, Z. H., Al-Rubeai, M., & Naciri, M. (2013a). Ultrasound-assisted freezing of Lactobacillus plantarum subsp. plantarum: The freezing process and cell viability. Innovative Food Science & Emerging Technologies, 18, 138–144.

    Google Scholar 

  • Kiani, H., Zhang, Z., & Sun, D.-W. (2013b). Effect of ultrasound irradiation on ice crystal size distribution in frozen agar gel samples. Innovative Food Science & Emerging Technologies, 18, 126–131.

    Google Scholar 

  • Kim, Y. B., Woo, S. M., Jeong, J. Y., Ku, S. K., Jeong, J. W., Kum, J. S., & Kim, E. M. (2013). Temperature changes during freezing and effect of physicochemical properties after thawing on meat by air blast and magnetic resonance quick freezing. Korean Journal of Food Science of Animal Resources, 33, 763–771.

    Google Scholar 

  • Kobayashi, A., & Kirschvink, J. L. (2013). A ferromagnetic model for the action of electric and magnetic fields in cryopreservation. Cryobiology, 68(2), 163–165.

    Google Scholar 

  • Kovačević, D., & Mastanjević, K. (2011). Cryoprotective effect of trehalose and maltose on washed and frozen stored beef meat. Czech Journal of Food Science, 29, 15–23.

    Google Scholar 

  • Kovačević, D., & Mastanjević, K. (2014). Cryoprotective effect of trehalose on washed chicken meat. Journal of Food Science and Technology, 51, 1006–1010.

    Google Scholar 

  • Lampila, P., & Lahteenmaki, L. (2007). Consumers’ attitudes towards high pressure freezing of food. British Food Journal, 109(10), 838–851.

    Google Scholar 

  • Le Bail, A., Chevaliera, D., Mussaa, D. M., & Ghoul, M. (2002). High pressure freezing and thawing of foods: a review. International Journal of Refrigeration, 25(5), 504–513.

    Google Scholar 

  • Le Bail, A., Orlowska, M., & Havet, M. (2010). Possible interest of electric field during food freezing; A review on electrofreezing. Sustainability & the Cold Chain, Meeting of IIR Commissions B1, B2, C2, D1 and D2, Cambridge, UK.

  • Le Bail, A., Orlowska, M., & Havet, M. (2012a). Electrostatic field-assisted food freezing. In D. W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 685–691). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Le Bail, A., Tzia, C., & Giannou, V. (2012b). Quality and safety of frozen bakery products. In D. W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 501–528). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Leunissen, J. L. M., & Yi, H. (2009). Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. Journal of Microscopy, 235, 25–35.

    CAS  Google Scholar 

  • Li, J., & Lee, T. C. (1995). Bacterial ice nucleation and its potential application in the food industry. Trends in Food Science & Technology, 6, 259–265.

    CAS  Google Scholar 

  • Li, B., & Sun, D. W. (2002a). Novel methods for rapid freezing and thawing of foods—a review. Journal of Food Engineering, 54, 175–182.

    Google Scholar 

  • Li, B., & Sun, D. W. (2002b). Effect of power ultrasound on freezing rate during immersion freezing of potatoes. Journal of Food Engineering, 55(3), 277–282.

    Google Scholar 

  • Luscher, C., Schluter, O., & Knorr, D. (2005). High pressure-low temperature processing of foods: Impact on cell membranes, texture, color and visual appearance of potato tissue. Innovative Food Science & Emerging Technologies, 6(1), 59–71.

    Google Scholar 

  • Mortazavi, A., & Tabatabaie, F. (2008). Study of ice cream freezing process after treatment with ultrasound. World Applied Sciences Journal, 4, 188–190.

    Google Scholar 

  • Naito, M., Hirai, S., Mihara, M., Terayama, H., Hatayama, N., Hayashi, S., Matsushita, M., & Itoh, M. (2012). Effect of a magnetic field on Drosophila under supercooled conditions. PLoS ONE, 7.

  • Newman, M. (2001). Cryogenic impingement freezing utilizing atomized liquid nitrogen for the rapid freezing of food products. Rapid Cooling of food, Meeting of IIR Commission C2, Bristol (UK), Section 2, 145–151.

  • Osako, K., Hossain, M. A., Kuwahara, K., & Nozaki, Y. (2005). Effect of trehalose on the gel-forming ability, state of water and myofibril denaturation of horse mackerel Trachurus japonicus surimi during frozen storage. Fisheries Science, 71, 367–373.

    CAS  Google Scholar 

  • Otero, L., & Sanz, P. D. (2012). High-pressure shift freezing. In D. W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 667–683). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Owada, N. (2007). Highly-efficient freezing apparatus and highly-efficient freezing method. US Patent 7237400 B2.

  • Owada, N., & Kurita, S. (2001). Super-quick freezing method and apparatus therefore. US Patent US 6250087 B1.

  • Pan, J., Shen, H., & Luo, Y. (2010). Cryoprotective effects of trehalose on grass carp (Ctenopharyngodon idellus) surimi during frozen storage. Journal of Food Processing and Preservation, 34, 715–727.

    CAS  Google Scholar 

  • Patist, A., & Zoerb, H. (2005). Preservation mechanisms of trehalose in food and biosystems. Colloids and Surfaces B: Biointerfaces, 40(2), 107–113.

    CAS  Google Scholar 

  • Payne, S. R., & Young, O. A. (1995). Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Science, 41(2), 147–155.

    CAS  Google Scholar 

  • Payne, S. R., Sandford, D., Harris, A., & Young, O. A. (1994). The effects of antifreeze proteins on chilled and frozen meat. Meat Science, 37(3), 429–438.

    CAS  Google Scholar 

  • Peralta, J. M., Rubiolo, A. C., & Zorrilla, S. E. (2009). Design and construction of a hydrofluidization system. Study of the heat transfer on a stationary sphere. Journal of Food Engineering, 90(3), 358–364.

    Google Scholar 

  • Peralta, J. M., Rubiolo, A. C., & Zorrilla, S. E. (2010). Mathematical modeling of the heat transfer and flow field of liquid refrigerants in a hydrofluidization system with a stationary sphere. Journal of Food Engineering, 99(3), 303–313.

    Google Scholar 

  • Peralta, J. M., Rubiolo, A. C., & Zorrilla, S. E. (2012). Mathematical modeling of the heat and mass transfer in a stationary potato sphere impinged by a single round liquid jet in a hydrofluidization system. Journal of Food Engineering, 109(3), 501–512.

    CAS  Google Scholar 

  • Petersen, A., Schneider, H., Rau, G., & Glasmacher, B. (2006). A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology, 53(2), 248–257.

    CAS  Google Scholar 

  • Petzold, G., & Aguilera, J. M. (2009). Ice morphology: Fundamentals and technological applications in foods. Food Biophysics, 4(4), 378–396.

    Google Scholar 

  • Pham, Q. T. (2008). Advances in food freezing/thawing/freeze concentration modelling and techniques. Japan Journal of Food Engineering, 9(1), 21–32.

    Google Scholar 

  • Phoon, P. Y., Gomez, F., Vicente, A., & Dejmek, P. (2008). Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 88, 144–148.

    CAS  Google Scholar 

  • Picart, L., Dumay, E., Guiraud, J. P., & Cheftel, J. C. (2004). Microbial inactivation by pressure-shift freezing: effects on smoked salmon mince inoculated with Pseudomonas fluorescens, Micrococcus luteus and Listeria innocua. LWT--Food Science and Technology, 37(2), 227–238.

    CAS  Google Scholar 

  • Poulsen, K. P. (1977). The freezing process under industrial conditions. Freezing, frozen storage and Freeze drying, Meeting of IIR Commissions C1, C2, Karlsruhe (GDR), Section 6, 347–353.

  • Préstamo, G., Palomares, L., & Sanz, P. (2004). Broccoli (Brasica oleracea) treated under pressure-shift freezing process. European Food Research and Technology, 219(6), 598–604.

    Google Scholar 

  • Préstamo, G., Palomares, L., & Sanz, P. (2005). Frozen foods treated by pressure shift freezing: Proteins and enzymes. Journal of Food Science, 70(1), S22–S27.

    Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275.

    Google Scholar 

  • Rastogi, N. K., Eshtiagi, M. N., & Knorr, D. (1999). Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. Journal of Food Science, 64, 1020–1023.

    CAS  Google Scholar 

  • Salvadori, V. O., & Mascheroni, R. H. (2002). Analysis of impingement freezers performance. Journal of Food Engineering, 54(2), 133–140.

    Google Scholar 

  • Sarkar, A., & Singh, R. P. (2004). Modeling flow and heat transfer during freezing of foods in forced airstreams. Journal of Food Science, 69(9), E488–E496.

    CAS  Google Scholar 

  • Sarkar, A., Nitin, N., Karwe, M., & Singh, R. P. (2004). Fluid flow and heat transfer in air jet impingement in food processing. Journal of Food Science, 69(4), R113–R122.

    Google Scholar 

  • Sato, M., & Fujita, K. (2006). Refrigerating device, refrigerating method and refrigerated object. US Patent US 2006/0112699 A1.

  • Scaman, C. H., & Durance, T. D. (2005). Combined microwave vacuum drying. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 507–533). Oxford: Elsevier Ltd.

    Google Scholar 

  • Schluter, O., Benet, G. U., Heinz, V., & Knorr, D. (2004). Metastable states of water and ice during pressure-supported freezing of potato tissue. Biotechnology Progress, 20(3), 799–810.

    CAS  Google Scholar 

  • Sequeira-Munoz, A., Chevalier, D., Simpson, B. K., Le Bail, A., & Ramaswamy, H. S. (2005). Effect of pressure-shift freezing versus air-blast freezing of carp (cyprinus carpio) fillets: a storage study. Journal of Food Biochemistry, 29(5), 504–516.

    Google Scholar 

  • Shayanfar, S., Chauhan, O. P., Toepfl, S., & Volker, H. (2013). The interaction of pulsed electric fields and texturizing—Antifreezing agents in quality retention of defrosted potato strips. International Journal of Food Science and Technology, 48, 1289–1295.

    CAS  Google Scholar 

  • Shayanfar, S., Chauhan, O. P., Toepfl, S., & Heinz, V. (2014). Pulsed electric field treatment prior to freezing carrot discs significantly maintains their initial quality parameters after thawing. International Journal of Food Science and Technology, 49, 1224–1230.

    CAS  Google Scholar 

  • Shim, K.-B., Hong, G.-P., Choi, M. J., & Min, S.-G. (2009). Effect of high pressure freezing and thawing process on the physical properties of pork. Korean Journal for Food Science of Animal Resources, 29(6), 736–742.

    Google Scholar 

  • Shizuka, J., Ogawa, Y., & Tagawa, A. (2008). Effects of freezing and thawing on the physical and electrical properties of dehydrated radish. Journal of the Japanese Society for Food Science and Technology, 55, 158–163.

    Google Scholar 

  • Soto, V., & Bórquez, R. (2001). Impingement jet freezing of biomaterials. Food Control, 12, 515–522.

    Google Scholar 

  • Soukoulis, C., & Fisk, I. (2014). Innovative ingredients and emerging technologies for controlling ice recrystallisation, texture and structure stability in frozen dairy desserts: a review. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2013.876385.

    Google Scholar 

  • Spiess, W. E. L. (1979). Impact of freezing rates on product quality of deep-frozen foods. Food Process Engineering, 8th European Food Symposium, Espo, Finland, 689–694.

  • Su, G., Ramaswamy, H. S., Zhu, S., Yu, Y., Hu, F., & Xu, M. (2014). Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innovative Food Science & Emerging Technologies, 26, 40–50.

    Google Scholar 

  • Sun, D. W., & Li, B. (2003). Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. Journal of Food Engineering, 57(4), 337–345.

    Google Scholar 

  • Sundsten, S., Andersson, A., Tornberg, E. (2001). The effect of the freezing rate on the quality of hamburger. Rapid Cooling of Food, Meeting of IIR Commission C2, Bristol, UK, 2001, Section 2, pp181-186.

  • Suzuki, T., Takeuchi, Y., Masuda, K., Watanabe, M., Shirakashi, R., Fukuda, Y., Tsuruta, T., Yamamoto, K., Koga, N., Hiruma, N., Ichioka, J., & Takai, K. (2009). Experimental investigation of effectiveness of magnetic field on food freezing process. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 26(4), 371–386.

    CAS  Google Scholar 

  • Tironi, V., Le-Bail, A., & de Lamballerie, M. (2007). Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. Journal of Food Science, 72(7), C381–C387.

    CAS  Google Scholar 

  • Tironi, V., de Lamballerie-Anton, M., & Le-Bail, A. (2009). DSC determination of glass transition temperature on sea bass (Dicentrarchus labrax) muscle: Effect of high-pressure processing. Food and Bioprocess Technology, 2(4), 374–382.

    Google Scholar 

  • Tironi, V., de Lamballerie, M., & Le-Bail, A. (2010). Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innovative Food Science & Emerging Technologies, 11(4), 565–573.

    CAS  Google Scholar 

  • Tocci, A. M., & Mascheroni, R. H. (2008). Some thermal properties of fresh and osmotically dehydrated Kiwifruit above and below the initial freezing temperature. Journal of Food Engineering, 88, 20–27.

    Google Scholar 

  • Torreggiani, D., Forni, E., Guercilena, I., Maestrelli, A., Bertolo, G., Archer, G. P., Kennedy, C. J., Bone, G., Blond, G., Contreras-Lopez, E., & Champion, D. (1999). Modifcation of glass transition temperature through carbohydrates additions: Effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International, 32, 441–446.

    CAS  Google Scholar 

  • Tressler, D. K., & Evers, C. F. (1957). The Freezing Preservation of Foods: Volume 1 – Freezing of Fresh Foods. The AVI Publishing Company, Inc.

  • Urrutia Benet, G., Chapleau, N., Lille, M., Le Bail, A., Autio, K., & Knorr, D. (2006). Quality related aspects of high pressure low temperature processed whole potatoes. Innovative Food Science & Emerging Technologies, 7(1), 32–39.

    Google Scholar 

  • Van Buggenhout, S., Messagie, I., Van Loey, A., & Hendrickx, M. (2005). Influence of low-temperature blanching combined with high-pressure shift freezing on the texture of frozen carrots. Journal of Food Science, 70(4), S304–S308.

    Google Scholar 

  • van Buggenhout, S., Lille, M., Messagie, I., Van Loey, A., Autio, K., & Hendrickx, M. (2006a). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222, 543–553.

    CAS  Google Scholar 

  • Van Buggenhout, S., Messagie, I., Maes, V., Duvetter, T., Van Loey, A., & Hendrickx, M. (2006b). Minimizing texture loss of frozen strawberries: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. European Food Research and Technology, 223(3), 395–404.

    CAS  Google Scholar 

  • Van Buggenhout, S., Grauwet, T., Van Loey, A., & Hendrickx, M. (2007). Effect of high-pressure induced ice i/ice iii-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Research International, 40(10), 1276–1285.

    Google Scholar 

  • Van Buggenhout, S., Grauwet, T., Van Loey, A., & Hendrickx, M. (2008). Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions. European Food Research and Technology, 226, 437–448.

    CAS  Google Scholar 

  • Velickova, E., Tylewicz, U., Rosa, M. D., Winkelhausen, E., Kuzmanova, S., & Galindo, F. G. (2013). Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT - Food Science and Technology, 52, 146–150.

    CAS  Google Scholar 

  • Venketesh, S., & Dayananda, C. (2008). Properties, potentials, and prospects of antifreeze proteins. Critical Reviews in Biotechnology, 28, 57–82.

    CAS  Google Scholar 

  • Verboven, P., Scheerlinck, N., & Nicolai, B. M. (2003). Surface heat transfer coefficients to stationary spherical particles in an experimental unit for hydrofluidisation freezing of individual foods. International Journal of Refrigeration, 26(3), 328–336.

    CAS  Google Scholar 

  • Volkert, M., Puaud, M., Wille, H. J., & Knorr, D. (2012). Effects of High Pressure–Low Temperature treatment on freezing behavior, sensorial properties and air cell distribution in sugar rich dairy based frozen food foam and emulsions. Innovative Food Science & Emerging Technologies, 13, 75–85.

    CAS  Google Scholar 

  • Wang, S., & Sun, D. W. (2012). Antifreeze proteins. In D. W. Sun & R. Boca (Eds.), Handbook of Frozen Food Processing and Packaging (2nd ed., pp. 693–708). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Watanabe, M., Kanesaka, N., Masuda, K., & Suzuki, T. (2011). Effect of oscillating magnetic field on supercooling in food freezing. Proceedings of the 23rd IIR International Congress of Refrigeration; refrigeration for sustainable development, August 21–26, Prague, Czech Republic. 1, 2892–2899.

  • Watrous, M. (2014). Taco Bell, trehalose and the trend of transparency. New Business News. http://www.foodbusinessnews.net/articles/news_home/Supplier-Innovations/2014/05/Taco_Bell_trehalose_and_the_tr.aspx?ID=%7BBD0024D9-9546-4D4E-B04A-5DB17EE1A039%7D. Accessed 18 March 2015.

  • Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41, 135–160.

    CAS  Google Scholar 

  • Winney, N. (2012). From the field to the supermarket – post harvest cooling, part 2 of 4. Cold Chain, April – June 2012, C20-C26.

  • Woo, M. W., & Mujumdar, A. S. (2010). Effects of electric and magnetic field on freezing and possible relevance in freeze drying. Drying Technology, 28(4), 433–443.

    CAS  Google Scholar 

  • Wowk, B. (2012). Electric and magnetic fields in cryopreservation. Cryobiology, 64, 301–303.

    Google Scholar 

  • Wu, L., Orikasa, T., Tokuyasu, K., Shiina, T., & Tagawa, A. (2009). Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: Effects of process conditions on the quality attributes of the samples. Journal of Food Engineering, 91(4), 560–565.

    Google Scholar 

  • Xanthakis, E., Havet, M., Chevallier, S., Abadie, J., & Le-Bail, A. (2013). Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science and Emerging Technologies, 20, 115–120.

    Google Scholar 

  • Xanthakis, E., Le-Bail, A., & Ramaswamy, H. (2014). Development of an innovative microwave assisted food freezing process. Innovative Food Science and Emerging Technologies, 26, 176–181.

    Google Scholar 

  • Xin, Y., Zhang, M., & Adhikari, B. (2014a). Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.). Ultrasonics Sonochemistry, 21, 1728–1735.

    CAS  Google Scholar 

  • Xin, Y., Zhang, M., & Adhikari, B. (2014b). The effects of ultrasound-assisted freezing on the freezing time and quality of broccoli (Brassica oleracea L. var. botrytis L.) during immersion freezing. International Journal of Refrigeration, 41, 82–91.

    Google Scholar 

  • Xu, H. N., Huang, W., Jia, C., Kim, Y., & Liu, H. (2009). Evaluation of water holding capacity and breadmaking properties for frozen dough containing ice structuring proteins from winter wheat. Journal of Cereal Science, 49, 250–253.

    CAS  Google Scholar 

  • Xu, Z., Guo, Y., Ding, S., An, K., & Wang, Z. (2014). Freezing by immersion in liquid CO2 at variable pressure: Response surface analysis of the application to carrot slices freezing. Innovative Food Science & Emerging Technologies, 22, 167–174.

    CAS  Google Scholar 

  • Yeh, C.-M., Kao, B.-Y., & Peng, H.-J. (2009). Production of a recombinant type 1 antifreeze protein analogue by l. Lactis and its applications on frozen meat and frozen dough. Journal of Agricultural and Food Chemistry, 57(14), 6216–6223.

    CAS  Google Scholar 

  • Yu, D., Liu, B., & Wang, B. (2012). The effect of ultrasonic waves on the nucleation of pure water and degassed water. Ultrasonics Sonochemistry, 19, 459–463.

  • Yuste, J., Pla, R., Beltram, E., & Mor-Mur, M. (2002). High pressure processing at subzero temperature: Effect on spoilage microbiota of poultry. High Pressure Research, 22, 673–676.

    Google Scholar 

  • Zhang, C., Zhang, H., & Wang, L. (2007a). Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International, 40(6), 763–769.

    CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., Gao, H., Guo, X. N., & Yao, H. Y. (2007b). Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation. Journal of Agricultural and Food Chemistry, 55(23), 9620–9626.

    CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., & Guo, X. (2008). Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb. LWT--Food Science and Technology, 41(6), 1029–1036.

    CAS  Google Scholar 

  • Zhang, S., Wang, H., & Chen, G. (2010). Addition of ice-nucleation active bacteria: Pseudomonas syringae pv. Panici on freezing of solid model food. LWT--Food Science and Technology, 43(9), 1414–1418.

    CAS  Google Scholar 

  • Zheng, L., & Sun, D. W. (2005). Ultrasonic assistance of food freezing. In D. W. Sun (Ed.), Emerging Technologies for Food Processing (pp. 603–626). London: Elsevier Academic Press.

    Google Scholar 

  • Zheng, L., & Sun, D. W. (2006). Innovative applications of power ultrasound during food freezing processes - a review. Trends in Food Science & Technology, 17(1), 16–23.

    CAS  Google Scholar 

  • Zhou, A., Benjakul, S., Pan, K., Gong, J., & Liu, X. (2006). Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage. Food Chemistry, 96, 96–103.

    CAS  Google Scholar 

  • Zhu, S. M., Le Bai, A., & Ramaswamy, H. S. (2003). Ice crystal formation in pressure shift freezing of atlantic salmon (Salmo salar) as compared to classical freezing methods. Journal of Food Processing and Preservation, 27(6), 427–444.

    Google Scholar 

  • Zhu, S. M., Le Bail, A., Chapleau, N., Ramaswamy, H. S., & de Lamballerie-Anton, M. (2004a). Pressure shift freezing of pork muscle: Effect on color, drip loss, texture, and protein stability. Biotechnology Progress, 20(3), 939–945.

    CAS  Google Scholar 

  • Zhu, S. M., Le Bail, A., Ramaswamy, H. S., & Chapleau, N. (2004b). Characterization of ice crystals in pork muscle formed by pressure-shift freezing as compared with classical freezing methods. Journal of Food Science, 69(4), 190–197.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Air Products for funding the work required to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, C., Purnell, G. & James, S.J. A Review of Novel and Innovative Food Freezing Technologies. Food Bioprocess Technol 8, 1616–1634 (2015). https://doi.org/10.1007/s11947-015-1542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1542-8

Keywords

Navigation