Skip to main content
Log in

Effects of Weak Oscillating Magnetic Fields on the Freezing of Pork Loin

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A number of novel freezing systems have been developed that claim to improve the quality of frozen foods by enhancing supercooling in the food prior to ice nucleation and consequently controlling ice crystal formation. One of these is the Cells Alive System (CAS) produced by ABI of Japan, which applies oscillating magnetic fields (OMF) during freezing. This study was carried out to investigate what effect applying OMF (0.04 to 0.53 mT) during freezing had on the freezing characteristics of pork loin samples when compared to freezing under the same conditions without OMF. Overall, the results of this study clearly indicate that freezing under the OMF conditions used in these experiments had no significant effect on the freezing characteristics of pork, in comparison with freezing under the same conditions without OMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedini, S., Kaku, M., Kawata, T., Koseki, H., Kojima, S., Sumi, H., Motokawa, M., Fujita, T., Ohtani, J., Ohwada, N., & Tanne, K. (2011). Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology, 62, 181–187.

    Article  CAS  Google Scholar 

  • Choi, Y. S., Ku, S. K., Jeong, J. Y., Jeon, K. H., & Kim, Y. B. (2015). Changes in ultrastructure and sensory characteristics on electro-magnetic and air blast freezing of beef during frozen storage. Korean Journal for Food Science of Animal Resources, 35, 27–34.

    Article  Google Scholar 

  • Commission Internationale de L’Éclairage (1976). CIE Colorimetry — Part 4: 1976 L*a*b* Color Space. Commission Internationale de L’Éclairage.

  • Cowell, N. D., & Namor, M. S. S. (1974). Heat transfer coefficients in plate freezing—effect of packaging materials. Proc. of I.I.R. Meetings of Commissions B1, C1 and C2. Bressanone, Italy, Sept., 17–20.

  • Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: the role of post-mortem biochemical and structural changes. Meat Science, 71, 194–204.

    Article  CAS  Google Scholar 

  • James, C., Purnell, G., & James, S. J. (2015a). A review of novel and innovative freezing technologies. Food and Bioprocess Technology, 8, 1616–1634.

    Article  CAS  Google Scholar 

  • James, C., Reitz, B. G., & James, S. J. (2015b). The freezing characteristics of garlic bulbs (Allium sativum L.) frozen conventionally or with the assistance of an oscillating weak magnetic field. Food and Bioprocess Technology, 8(3), 702–708.

    Article  Google Scholar 

  • James, C., Purnell, G., & James, S. J. (2015c). Can magnetism improve the storage of foods. New Food, 18(2), 40–43.

    Google Scholar 

  • Jiang, S. T., & Lee, T. C. (2005). Freezing seafood and seafood products: principles and applications. In Y. H. Hui (Ed.), Handbook of food science, technology, and Engineering (pp. 39-1–39-35). Boca Raton: CRC Press.

    Google Scholar 

  • Kaku, M., Kamada, H., Kawata, T., Koseki, H., Abedini, S., Kojima, S., Motokawa, M., Fujita, T., Ohtani, J., Tsuka, N., Matsuda, Y., Sunagawa, H., Hernandes, R. A. M., Ohwada, N., & Tanne, K. (2010). Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 61, 73–78.

    Article  CAS  Google Scholar 

  • Kaku, M., Kawata, T., Abedini, S., Koseki, H., Kojima, S., Sumi, H., Shikata, H., Motokawa, M., Fujita, T., Ohtani, J., Ohwada, N., Kurita, M., & Tanne, K. (2012). Electric and magnetic fields in cryopreservation: a response. Cryobiology, 64, 304–305.

    Article  Google Scholar 

  • Kim, Y. B., Jeong, J. Y., Ku, S. K., Kim, E. M., Park, K. J., & Jang, A. (2013a). Effects of various thawing methods on the quality characteristics of frozen beef. Korean Journal for Food Science of Animal Resources, 33(6), 723–729.

    Article  Google Scholar 

  • Kim, Y. B., Woo, S. M., Jeong, J. Y., Ku, S. K., Jeong, J. W., Kum, J. S., & Kim, E. M. (2013b). Temperature changes during freezing and effect of physicochemical properties after thawing on meat by air blast and magnetic resonance quick freezing. Korean Journal for Food Science of Animal Resources, 33(6), 763–771.

    Article  Google Scholar 

  • Ku, S. K., Jeong, J. Y., Park, J. D., Jeon, K. H., Kim, E. M., & Kim, Y. B. (2014). Quality evaluation of pork with various freezing and thawing methods. Korean Journal for Food Science of Animal Resources, 34(5), 597–603.

    Article  Google Scholar 

  • Mok, J. H., Choi, W., Park, S. H., Lee, S. H., & Jun, S. (2015). Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. International Journal of Refrigeration, 50, 137–145.

    Article  CAS  Google Scholar 

  • Naito, M., Hirai, S., Mihara, M., Terayama, H., Hatayama, N., Hayashi, S., Matsushita, M., & Itoh, M. (2012). Effect of a magnetic field on drosophila under supercooled conditions. PloS One, 7.

  • Nakagawa, T., Mihara, M., Noguchi, S., Fujii, K., Ohwada, T., Niino, T., Sato, I., Yamashita, H., Masamune, K., & Dohi, T. (2012). Development of pathology specimen preparation method by supercooling cryopreservation under magnetic field. Academic Collaborations for Sick Children, 5, 21–27.

    Article  Google Scholar 

  • Ngapo, T. M., Babare, I. H., Reynolds, J., & Mawson, R. F. (1999). Freezing and thawing rate effects on drip loss from samples of pork. Meat Science, 53(3), 149–158.

    Article  CAS  Google Scholar 

  • Otero, L., Rodríguez, A. C., Pérez-Mateos, M., & Sanz, P. D. (2016). Effects of magnetic fields on freezing: application to biological products. Comprehensive Reviews in Food Science and Food Safety, 15(3), 646–667.

    Article  Google Scholar 

  • Otero, L., Pérez-Mateos, M., Rodríguez, A. C., & Sanz, P. D. (2017). Electromagnetic freezing: effects of weak oscillating magnetic fields on crab sticks. Journal of Food Engineering, 200, 87–94.

    Article  CAS  Google Scholar 

  • Owada, N. (2007). Highly-efficient freezing apparatus and highly-efficient freezing method. United States Patent US 7,237,400B2.

  • Owada, N., & Kurita, S. (2001). Super-quick freezing method and apparatus therefor. United States Patent US 2001/6250087B1.

  • Pérez Chabela, M. L., & Mateo-Oyague, J. (2006). Frozen meat: Quality and shelf life. In Y. H. Hui (Ed.), Handbook of food science, technology, and Engineering (pp. 115-1–115-9). Boca Raton: CRC Press.

    Google Scholar 

  • Suzuki, T., Takeuchi, Y., Masuda, K., Watanabe, M., Shirakashi, R., Fukuda, Y., Tsuruta, T., Yamamoto, K., Koga, N., Hiruma, N., Ichioka, J., & Takai, K. (2009). Experimental investigation of effectiveness of magnetic field on food freezing process. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 26, 371–386.

    CAS  Google Scholar 

  • Watanabe, M., Kanesaka, N., Masuda, K., & Suzuki, T. (2011). Effect of oscillating magnetic field on supercooling in food freezing. Proceedings of the 23 rd IIR International Congress of Refrigeration; refrigeration for sustainable development, August 21–26, Prague, Czech Republic. 1, 2892–2899.

  • Woo, M. W., & Mujumdar, A. S. (2010). Effects of electric and magnetic field on freezing and possible relevance in freeze drying. Drying Technology, 28, 433–443.

    Article  CAS  Google Scholar 

  • Wowk, B. (2012). Electric and magnetic fields in cryopreservation. Cryobiology, 64, 301–303.

    Article  Google Scholar 

  • Yamamoto, N., Tamura, S., Matsushita, J., & Ishimura, K. (2005). Fracture properties and microstructure of chicken breasts frozen by electromagnetic freezing. Journal of Home Economics of Japan, 56(3), 141–151.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish MINECO through the Project AGL2012-39756-C02-01. A. C. Rodríguez has been supported by a grant from Spanish MINECO for the carrying out of a brief stay in a R & D centre, as an additional action to the pre-doctoral contract BES-2013-065942 from MINECO, jointly financed by the European Social Fund, in the framework of the National Program for the Promotion of Talent and its Employability (National Sub-Program for Doctors Training). We would also like to acknowledge Air Products for supporting the supervisory costs of C. James and S. J. James at FRPERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A.C., James, C. & James, S.J. Effects of Weak Oscillating Magnetic Fields on the Freezing of Pork Loin. Food Bioprocess Technol 10, 1615–1621 (2017). https://doi.org/10.1007/s11947-017-1931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1931-2

Keywords

Navigation