Skip to main content
Log in

Needleless Electrospinning: Concepts and Applications in the Food Industry

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Needleless electrospinning, an electrohydrodynamic process, is an emerging approach to producing nanofiber mats from an open liquid surface. Importantly, the approach offers 3–250 times higher production rates than needle-based electrospinning systems and has the potential to develop biocompatible and biodegradable nanofibers that have numerous applications in the food industry. The electrospinning potential of various biomaterials (from plant and animal sources) in needleless configurations is highlighted in this review. Also, the factors influencing the production rate and quality of needleless electrospun nanofibers are emphasized. Further, the reported uses of needleless electrospun nanofiber mats in food applications like packaging, filtration, bioactive encapsulation, enzyme immobilization, and food quality sensing are presented. Finally, challenges and areas to be explored further are summarized, considering prospects. Electrospun nanofibers are valued for their characteristics and unique capabilities. However, often, scale-up production is challenging, limiting its usage in multiple commercial applications. Overcoming this concern, needleless electrospinning is a viable approach for scaling up the production of nanofibers. Offering properties on par with conventional electrospinning, the needleless approach is finding expanding avenues in different sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. MacDiarmid AG (2001) Nobel lecture: “synthetic metals”: a novel role for organic polymers. Rev Mod Phys 73:701. https://doi.org/10.1103/RevModPhys.73.701

    Article  CAS  Google Scholar 

  2. De Oliveira Mori CLS, Dos Passos NA, Oliveira JE et al (2014) Electrospinning of zein/tannin bio-nanofibers. Ind Crops Prod 52:298–304. https://doi.org/10.1016/j.indcrop.2013.10.047

    Article  CAS  Google Scholar 

  3. Xiong J, Liu Y, Li A et al (2021) Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater Des 197:109247. https://doi.org/10.1016/j.matdes.2020.109247

    Article  CAS  Google Scholar 

  4. Amal Nath V, Vijayakumar R, Leena MM et al (2022) Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications. Food Chem 394:133420. https://doi.org/10.1016/j.foodchem.2022.133420

    Article  CAS  PubMed  Google Scholar 

  5. Niu H, Wang X, Lin T (2012) Needleless electrospinning: influences of fibre generator geometry. J Text Inst 103:787–794. https://doi.org/10.1080/00405000.2011.608498

    Article  CAS  Google Scholar 

  6. Yuan H, Zhou Q, Zhang Y (2017) Improving fiber alignment during electrospinning. In: Electrospun Nanofibers. Woodhead Publishing, pp 125–147

  7. Kanjanapongkul K, Wongsasulak S, Yoovidhya T (2010) Investigation and prevention of clogging during electrospinning of zein solution. J Appl Polym Sci 118:1821–1829. https://doi.org/10.1002/APP.32499

    Article  CAS  Google Scholar 

  8. Bö Ttjer R, Grothe T, Wehlage D, Ehrmann A (2018) Electrospraying poloxamer/(bio-) polymer blends using a needleless electrospinning machine. J Text Fibrous Mater 1:1–7. https://doi.org/10.1177/2515221117743079

    Article  Google Scholar 

  9. Shaid A, Wang L, Padhye R, Jadhav A (2018) Needleless electrospinning and electrospraying of mixture of polymer and aerogel particles on textile. Adv Mater Sci Eng. https://doi.org/10.1155/2018/1781930

  10. Cengiz F, Dao TA, Jirsak O (2010) Influence of solution properties on the roller electrospinning of poly(vinyl alcohol). Polym Eng Sci 50:936–943. https://doi.org/10.1002/pen.21599

    Article  CAS  Google Scholar 

  11. Kouhi M, Mobasheri M, Valipouri A (2023) Needleless electrospinning. Electrospun Nanofibrous Membr Princ Appl 145–171. https://doi.org/10.1016/B978-0-12-823032-9.00011-8

  12. Qin Z, Yan G, Zhang X et al (2022) Finite element method assisted design of needleless electrospinning systems for mass production of polymer nanofibers. Chem Eng Sci 259:117817. https://doi.org/10.1016/j.ces.2022.117817

    Article  CAS  Google Scholar 

  13. Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer (Guildf) 45:2977–2980. https://doi.org/10.1016/j.polymer.2004.02.066

    Article  CAS  Google Scholar 

  14. Zhou W, Zhang W, Liu Y et al (2017) Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry. Anal Chim Acta 987:64–71. https://doi.org/10.1016/j.aca.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  15. Molnar K, Nagy ZK (2016) Corona-electrospinning: needleless method for high-throughput continuous nanofiber production. Eur Polym J 74:279–286. https://doi.org/10.1016/j.eurpolymj.2015.11.028

    Article  CAS  Google Scholar 

  16. Zhou Z, Wu XF, Ding Y et al (2014) Needleless emulsion electrospinning for scalable fabrication of core–shell nanofibers. J Appl Polym Sci 131. https://doi.org/10.1002/app.40896

  17. Zheng G, Jiang J, Wang X et al (2018) Self-cleaning threaded rod spinneret for high-efficiency needleless electrospinning. Appl Phys A Mater Sci Process 124:1–8. https://doi.org/10.1007/S00339-018-1892-y

    Article  Google Scholar 

  18. Latiffah E, Agung BH, Hapidin DA, Khairurrijal K (2022) Fabrication of polyvinylpyrrolidone (PVP) nanofibrous membranes using mushroom-spinneret needleless electrospinning. J Phys Conf Ser 2243:012101. https://doi.org/10.1088/1742-6596/2243/1/012101

    Article  CAS  Google Scholar 

  19. Yan G, Yang Z, Li J et al (2022) Multi-unit needleless electrospinning for one-step construction of 3D waterproof MF-PVA nanofibrous membranes as high-performance air filters. Small 2206403. https://doi.org/10.1002/smll.202206403

  20. Ali U, Niu H, Aslam S et al (2017) Needleless electrospinning using sprocket wheel disk spinneret. J Mater Sci 52:7567–7577. https://doi.org/10.1007/S10853-017-0989-6

    Article  CAS  Google Scholar 

  21. Wei L, Liu C, Mao X et al (2019) Multiple-jet needleless electrospinning approach via a linear flume spinneret. Polymers (Basel) 11:2052. https://doi.org/10.3390/polym11122052

    Article  CAS  PubMed  Google Scholar 

  22. Jin X, Peters R, Pearson E (2021) Apparatus for continuous needleless electrospinning a nanoscale or submicron scale polymer fiber web onto a substrate

  23. Ng JJ, Supaphol P (2018) Rotating-disk electrospinning: needleless electrospinning of poly(caprolactone), poly(lactic acid) and poly(vinyl alcohol) nanofiber mats with controlled morphology. J Polym Res 25:1–9. https://doi.org/10.1007/S10965-018-1540-4

    Article  CAS  Google Scholar 

  24. Wortmann M, Frese N, Sabantina L et al (2019) New polymers for needleless electrospinning from low-toxic solvents. Nanomaterials 9:52. https://doi.org/10.3390/nano9010052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Angel N, Li S, Yan F, Kong L (2022) Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci Technol 120:308–324. https://doi.org/10.1016/j.tifs.2022.01.003

    Article  CAS  Google Scholar 

  26. K Li H Yang L Jiang (2020) Glycerin, NaOH aqueous solution as a green solvent system for dissolution of cellulose. Polym et al (2020) 12(1735):12–1735 https://doi.org/10.3390/POLYM12081735

  27. Ge W, Shuai J, Wang Y et al (2022) Progress on chemical modification of cellulose in “green” solvents. Polym Chem 13:359–372. https://doi.org/10.1039/D1PY00879J

    Article  CAS  Google Scholar 

  28. Onwukamike KN, Grelier S, Grau E et al (2019) Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustain Chem Eng 7:1826–1840. https://doi.org/10.1021/acssuschemeng.8B04990

    Article  CAS  Google Scholar 

  29. Maver T, Kurečič M, Pivec T et al (2020) Needleless electrospun carboxymethyl cellulose/polyethylene oxide mats with medicinal plant extracts for advanced wound care applications. Cellulose 27:4487–4508. https://doi.org/10.1007/S10570-020-03079-9

    Article  CAS  Google Scholar 

  30. Zahran SME, Abdel-Halim AH, Nassar K, Nada AA (2020) Fabrication of nanofiltration membrane based on non-biofouling PVP/lecithin nanofibers reinforced with microcrystalline cellulose via needle and needle-less electrospinning techniques. Int J Biol Macromol 157:530–543. https://doi.org/10.1016/j.ijbiomac.2020.04.152

    Article  CAS  PubMed  Google Scholar 

  31. Mikeš P, Baker DA, Uhlin A et al (2021) The mass production of lignin fibres by means of needleless electrospinning. J Polym Environ 29:2164–2173. https://doi.org/10.1007/S10924-020-02029-7

    Article  Google Scholar 

  32. Azmana M, Mahmood S, Hilles AR et al (2021) A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int J Biol Macromol 185:832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

    Article  CAS  PubMed  Google Scholar 

  33. Sasithorn N, Mongkholrattanasit R, Martinová L (2016) Preparation of silk fibroin nanofibres by needleless electrospinning using formic acid-calcium chloride as the solvent. Appl Mech Mater 848:203–206. https://doi.org/10.4028/www.scientific.net/amm.848.203

    Article  Google Scholar 

  34. Lu W, Xu H, Zhang B et al (2016) The preparation of chitosan oligosaccharide/alginate sodium/gelatin nanofibers by spiral-electrospinning. J Nanosci Nanotechnol 16:2360–2364. https://doi.org/10.1166/jnn.2016.10910

    Article  CAS  PubMed  Google Scholar 

  35. Lu W, Ma M, Xu H et al (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4. https://doi.org/10.1016/j.matlet.2014.10.146

    Article  CAS  Google Scholar 

  36. Minaei F, Ravandi SAH, Hejazi SM, Alihosseini F (2019) The fabrication and characterization of casein/PEO nanofibrous yarn via electrospinning. E-Polymers 19:154–167. https://doi.org/10.1515/epoly-2019-0017

    Article  CAS  Google Scholar 

  37. Chen L, Xiang M, Wu F et al (2023) Encapsulation of lycopene into electrospun nanofibers from whey protein isolate-Tricholoma lobayense polysaccharide complex stabilized emulsions: structural characterization, storage stability, in vitro release, and cellular evaluation. Int J Biol Macromol 238:123993. https://doi.org/10.1016/j.ijbiomac.2023.123993

    Article  CAS  PubMed  Google Scholar 

  38. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  39. Amorim LFA, Mouro C, Riool M, Gouveia IC (2022) Antimicrobial food packaging based on prodigiosin-incorporated double-layered bacterial cellulose and chitosan composites. Polymers (Basel) 14:315. https://doi.org/10.3390/polym14020315

    Article  CAS  PubMed  Google Scholar 

  40. Gibis M, Pribek F, Kutzli I, Weiss J (2021) Influence of the protein content on fiber morphology and heat treatment of electrospun potato protein–maltodextrin fibers. Appl Sci 11:7896. https://doi.org/10.3390/APP11177896/S1

    Article  CAS  Google Scholar 

  41. Kutzli I, Gibis M, Baier SK, Weiss J (2019) Electrospinning of whey and soy protein mixed with maltodextrin – influence of protein type and ratio on the production and morphology of fibers. Food Hydrocoll 93:206–214. https://doi.org/10.1016/j.foodhyd.2019.02.028

    Article  CAS  Google Scholar 

  42. Mosayebi V, Fathi M, Shahedi M et al (2022) Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. Food Biosci 47:101759. https://doi.org/10.1016/j.fbio.2022.101759

    Article  CAS  Google Scholar 

  43. Sasithorn N, Martinová L (2015) Needleless electrospinning of silk fibroin/gelatin blend nanofibres. Appl Mech Mater 804:213–216. https://doi.org/10.4028/www.scientific.net/amm.804.213

    Article  Google Scholar 

  44. Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530. https://doi.org/10.1002/APP.30891

    Article  CAS  Google Scholar 

  45. Moon S, Gil M, Lee KJ (2017) Syringeless electrospinning toward versatile fabrication of nanofiber web. Sci Rep 7. https://doi.org/10.1038/srep41424

  46. Wei L, Sun R, Liu C et al (2019) Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater Des 179:107885. https://doi.org/10.1016/j.matdes.2019.107885

    Article  CAS  Google Scholar 

  47. Huang C, Niu H, Wu C et al (2013) Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. J Biomed Mater Res Part A 101A:115–122. https://doi.org/10.1002/jbm.a.34306

    Article  CAS  Google Scholar 

  48. Wang L, Zhang C, Gao F, Pan G (2016) Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv 6:105988–105995. https://doi.org/10.1039/C6RA24557A

    Article  CAS  Google Scholar 

  49. Hwang M, Karenson MO, Elabd YA (2019) High production rate of high purity, high fidelity nafion nanofibers via needleless electrospinning. ACS Appl Polym Mater 1:2731–2740. https://doi.org/10.1021/acsapm.9b00681

    Article  CAS  Google Scholar 

  50. Karim M, Fathi M, Soleimanian-Zad S (2020) Incorporation of zein nanofibers produced by needle-less electrospinning within the casted gelatin film for improvement of its physical properties. Food Bioprod Process 122:193–204. https://doi.org/10.1016/j.fbp.2020.04.006

    Article  CAS  Google Scholar 

  51. Li TT, Yan M, Zhong Y et al (2019) Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/chitosan (CS)/graphene (Gr) nanofibrous membranes. J Mater Res Technol 8:5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035

    Article  CAS  Google Scholar 

  52. Karim M, Fathi M, Soleimanian-Zad S (2021) Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: production, characterization and their application to reduce nitrite in sausages. J Food Eng 288:110140. https://doi.org/10.1016/j.jfoodeng.2020.110140

    Article  CAS  Google Scholar 

  53. Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater 2012:1–9. https://doi.org/10.1155/2012/785920

    Article  CAS  Google Scholar 

  54. Rezazadeh A, Moghaddas Kia E, Hamishehkar H et al (2022) Capsaicin-incorporated zein electrospun nanofibers: characterization and release behavior. Food Biosci 49:101843. https://doi.org/10.1016/j.fbio.2022.101843

    Article  CAS  Google Scholar 

  55. Ramakrishnan R, Ramakrishnan P, Ranganathan B et al (2019) Effect of humidity on formation of electrospun polycaprolactone nanofiber embedded with curcumin using needdleless electrospinning. Mater Today Proc 19:1241–1246. https://doi.org/10.1016/j.matpr.2019.11.128

    Article  CAS  Google Scholar 

  56. Mounesan M, Akbari S, Brycki BE (2022) Needleless electrospun mats based on polyamidoamine dendritic polymers for encapsulation of essential oils in personal respiratory equipment. J Ind Text 51:6333–6352. https://doi.org/10.1177/15280837211048155

    Article  CAS  Google Scholar 

  57. Ai-Tang R, Utarak H, Yoovidhya T et al (2013) Fabrication and antifungal activity of cellulose acetate-based fibers encapsulating natural neem seed oil. Adv Mater Res 747:166–169. https://doi.org/10.4028/www.scientific.net/amr.747.166

    Article  CAS  Google Scholar 

  58. Prabu GTV, Dhurai B (2020) A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-60752-6

    Article  CAS  Google Scholar 

  59. Buzgo M, Filova E, Staffa AM et al (2018) Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J Tissue Eng Regen Med 12:583–597. https://doi.org/10.1002/TERM.2474

    Article  CAS  PubMed  Google Scholar 

  60. Fabra MJ, López-Rubio A, Lagaron JM (2014) Biopolymers for food packaging applications. Smart Polym their Appl 476–509. https://doi.org/10.1533/9780857097026.2.476

  61. Yuan M, Zhang Z-H, Roy S et al (2023) Assessment of Zataria multiflora essential oil- incorporated electrospun polyvinyl alcohol fiber mat as active packaging. Polymers (Basel) 15:1048. https://doi.org/10.3390/polym15041048

    Article  CAS  Google Scholar 

  62. Mendes JF, Norcino LB, Corrêa TQ et al (2023) Obtaining poly (lactic acid) nanofibers encapsulated with peppermint essential oil as potential packaging via solution-blow-spinning. Int J Biol Macromol 230:123424. https://doi.org/10.1016/j.ijbiomac.2023.123424

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Y, Yang K, Qin Z et al (2022) Cross-linked gluten/zein nanofibers via Maillard reaction with the loading of star anise essential oil/β-cyclodextrin inclusions for food-active packaging. Food Packag Shelf Life 34:100950. https://doi.org/10.1016/j.fpsl.2022.100950

    Article  CAS  Google Scholar 

  64. Srbová J, Slováková M, Křípalová Z et al (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44. https://doi.org/10.1016/j.reactfunctpolym.2016.05.009

    Article  CAS  Google Scholar 

  65. Wong DE, Senecal KJ, Goddard JM (2017) Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids Surfaces B Biointerfaces 154:270–278. https://doi.org/10.1016/j.colsurfb.2017.03.033

    Article  CAS  PubMed  Google Scholar 

  66. El-Aassar MR (2013) Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. J Mol Catal B Enzym 85–86:140–148. https://doi.org/10.1016/j.molcatb.2012.09.002

    Article  CAS  Google Scholar 

  67. Fatarella E, Spinelli D, Ruzzante M, Pogni R (2014) Nylon 6 film and nanofiber carriers: preparation and laccase immobilization performance. J Mol Catal B Enzym 102:41–47. https://doi.org/10.1016/j.molcatb.2014.01.012

    Article  CAS  Google Scholar 

  68. Daels N, De Vrieze S, Decostere B et al (2010) The use of electrospun flat sheet nanofibre membranes in MBR applications. Desalination 257:170–176. https://doi.org/10.1016/j.desal.2010.02.027

    Article  CAS  Google Scholar 

  69. Xiong J, Zhou M, Zhang H et al (2018) Sandwich-structured fibrous membranes with low filtration resistance for effective PM2.5 capture via one-step needleless electrospinning. Mater Res Express 6:035027. https://doi.org/10.1088/2053-1591/aaf760

  70. Li X, Zhang Y, Li H et al (2014) Effect of oriented fiber membrane fabricated via needleless melt electrospinning on water filtration efficiency. Desalination 344:266–273. https://doi.org/10.1016/j.desal.2014.04.003

    Article  CAS  Google Scholar 

  71. Mamun A, Trabelsi M, Klöcker M et al (2020) Needleless electrospun polyacrylonitrile/konjac glucomannan nanofiber mats. J Eng Fiber Fabr 15. https://doi.org/10.1177/1558925020964806

  72. Gopi S, Kargl R, Kleinschek KS et al (2018) Chitin nanowhisker – inspired electrospun PVDF membrane for enhanced oil-water separation. J Environ Manage 228:249–259. https://doi.org/10.1016/j.jenvman.2018.09.039

    Article  CAS  PubMed  Google Scholar 

  73. Mercante LA, Scagion VP, Migliorini FL et al (2017) Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC Trends Anal Chem 91:91–103. https://doi.org/10.1016/j.trac.2017.04.004

    Article  CAS  Google Scholar 

  74. Liu L, Zhang J, Zou X et al (2022) A high-stable and sensitive colorimetric nanofiber sensor based on PCL incorporating anthocyanins for shrimp freshness. Food Chem 377:131909. https://doi.org/10.1016/j.foodchem.2021.131909

    Article  CAS  PubMed  Google Scholar 

  75. Elveren B, Hribernik S, Kurečič M (2022) Fabrication of polysaccharide-based halochromic nanofibers via needle-less electrospinning and their characterization: a study of the leaching effect. Polymers (Basel) 14:4239. https://doi.org/10.3390/polym14194239

    Article  CAS  PubMed  Google Scholar 

  76. Ponce-alcántara S, Martín-sánchez D, Pérez-márquez A et al (2018) Optical sensors based on polymeric nanofibers layers created by electrospinning. Opt Mater Express 8:3163–3175. https://doi.org/10.1364/ome.8.003163

    Article  CAS  Google Scholar 

  77. Háková M, Raabová H, Havlíková LC et al (2018) Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent. Talanta 181:326–332. https://doi.org/10.1016/j.talanta.2018.01.043

    Article  CAS  PubMed  Google Scholar 

  78. Chen A, Guo H, Luan J et al (2022) The electrospun polyacrylonitrile/covalent organic framework nanofibers for efficient enrichment of trace sulfonamides residues in food samples. J Chromatogr A 1668:462917. https://doi.org/10.1016/j.chroma.2022.462917

    Article  CAS  PubMed  Google Scholar 

  79. Iranshahi K, Schoeller J, Luisier N et al (2022) Improving needleless electrospinning throughput by tailoring polyurethane solution properties with polysiloxane additives. ACS Appl Polym Mater 4:2205–2215. https://doi.org/10.1021/acsapm.2C00263

    Article  CAS  Google Scholar 

  80. Smółka K, Firych-Nowacka A, Wiak S (2022) Analysis of the electrostatic field distribution to improve the electrospinning process—practical tips. J Comput Sci 59:101542. https://doi.org/10.1016/j.jocs.2021.101542

    Article  Google Scholar 

  81. İçoğlu Hİ, Yıldırım B, Kılıç A et al (2023) Controlled fiber deposition via modeling the auxiliary electrodes of the needleless electrospinning to produce continuous nanofiber bundles. Mater Today Commun 34:104966. https://doi.org/10.1016/j.mtcomm.2022.104966

    Article  CAS  Google Scholar 

  82. Domaschke S, Morel A, Kaufmann R et al (2020) Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties. J Mech Behav Biomed Mater 104:103634. https://doi.org/10.1016/j.jmbbm.2020.103634

    Article  CAS  PubMed  Google Scholar 

  83. Hwang SH, Song JY, Il RH et al (2023) Adaptive electrospinning system based on reinforcement learning for uniform-thickness nanofiber air filters. Adv Fiber Mater 5:617–631. https://doi.org/10.1007/S42765-022-00247-3

    Article  Google Scholar 

  84. Dodero A, Castellano M, Vicini S et al (2022) Eco-friendly needleless electrospinning and tannic acid functionalization of polyurethane nanofibers with tunable wettability and mechanical performances. Macromol Mater Eng 307:2100823. https://doi.org/10.1002/mame.202100823

    Article  CAS  Google Scholar 

  85. Dubský M, Kubinová Š, Širc J et al (2012) Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med 23:931–941. https://doi.org/10.1007/S10856-012-4577-7

    Article  PubMed  Google Scholar 

  86. Nieminen HJ, Laidmäe I, Salmi A et al (2018) (2018) Ultrasound-enhanced electrospinning. Sci Reports 81(8):1–6. https://doi.org/10.1038/s41598-018-22124-z

    Article  CAS  Google Scholar 

  87. Kara Y, He H, Molnár K (2020) Shear-aided high-throughput electrospinning: a needleless method with enhanced jet formation. J Appl Polym Sci 137:49104. https://doi.org/10.1002/APP.49104

    Article  CAS  Google Scholar 

  88. Yan G, Niu H, Zhou H et al (2018) Electro-aerodynamic field aided needleless electrospinning. Nanotechnology 29:235302. https://doi.org/10.1088/1361-6528/aab830

    Article  CAS  PubMed  Google Scholar 

  89. Esmaeilzadeh I, Mottaghitalab V, Tousifar B et al (2015) A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber. Int J Ind Chem 6:193–211. https://doi.org/10.1007/S40090-015-0043-y

    Article  CAS  Google Scholar 

  90. Roemhild K, Niemz F, Mohan T et al (2016) The cellulose source matters—hollow semi spheres or fibers by needleless electrospinning. Macromol Mater Eng 301:42–47. https://doi.org/10.1002/MAME.201500191

    Article  CAS  Google Scholar 

  91. Neibolts N, Platnieks O, Gaidukovs S et al (2020) Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Mater Today Chem 17:100301. https://doi.org/10.1016/j.mtchem.2020.100301

    Article  CAS  Google Scholar 

  92. Grimmelsmann N, Homburg SV, Ehrmann A (2017) Needleless electrospinning of pure and blended chitosan. IOP Conf Ser Mater Sci Eng 225:012098. https://doi.org/10.1088/1757-899X/225/1/012098

    Article  Google Scholar 

  93. Lou CW, Lin MC, Huang CH et al (2022) Preparation of needleless electrospinning polyvinyl alcohol/water-soluble chitosan nanofibrous membranes: antibacterial property and filter efficiency. Polymers (Basel) 14:1054. https://doi.org/10.3390/polym14051054

    Article  CAS  PubMed  Google Scholar 

  94. Poshina DN, Khadyko IA, Sukhova AA et al (2019) Needleless electrospinning of a chitosan lactate aqueous solution: influence of solution composition and spinning parameters. Technologies 8:2. https://doi.org/10.3390/technologies8010002

    Article  Google Scholar 

  95. Turan D, Gibis M, Gunes G et al (2018) The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)–dextran conjugates in fibers produced by needleless electrospinning after annealing. Food Funct 9:2193–2200. https://doi.org/10.1039/C7FO02041D

    Article  CAS  PubMed  Google Scholar 

  96. Kutzli I, Gibis M, Baier SK, Weiss J (2018) Fabrication and characterization of food-grade fibers from mixtures of maltodextrin and whey protein isolate using needleless electrospinning. J Appl Polym Sci 135:46328. https://doi.org/10.1002/APP.46328

    Article  Google Scholar 

  97. Cengiz-Ca̧llioǧlu F (2014) Dextran nanofiber production by needleless electrospinning process. E-Polymers 14:5–13. https://doi.org/10.1515/epoly-2013-0021

    Article  CAS  Google Scholar 

  98. El-Aassar MR, Al-Deyab SS, Kenawy ER (2013) Covalent immobilization of β-galactosidase onto electrospun nanofibers of poly (AN-co-MMA) copolymer. J Appl Polym Sci 127:1873–1884. https://doi.org/10.1002/APP.37922

    Article  CAS  Google Scholar 

  99. Keirouz A, Zakharova M, Kwon J et al (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C 112:110939. https://doi.org/10.1016/j.msec.2020.110939

    Article  CAS  Google Scholar 

  100. Vadodaria K, Stylios G (2016) A study of bubble electrospinning of ethylcellulose ultrafine fibres. Polym Polym Compos 24:265–272. https://doi.org/10.1177/096739111602400405

    Article  CAS  Google Scholar 

  101. Kutzli I, Gibis M, Baier SK, Weiss J (2018) Formation of whey protein isolate (WPI)-maltodextrin conjugates in fibers produced by needleless electrospinning. J Agric Food Chem 66:10283–10291. https://doi.org/10.1021/acs.jafc.8B02104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Literature survey and writing—original draft: V.R.; writing—review and editing: L.M., M.M.L., J.A.M., and C.A.; conceptualization, review, and supervision: J.A.M. and C.A.

Corresponding authors

Correspondence to J. A. Moses or C. Anandharamakrishnan.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, V., Mahalakshmi, L., Leena, M.M. et al. Needleless Electrospinning: Concepts and Applications in the Food Industry. Food Eng Rev 16, 252–269 (2024). https://doi.org/10.1007/s12393-023-09362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09362-2

Keywords

Navigation