Skip to main content

Advertisement

Log in

Hyperbaric Storage of Food: Applications, Challenges, and Perspectives

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Hyperbaric storage (HS) is a developing food preservation technology based on the application of moderate hydrostatic pressure. Having a quasi-zero energetic cost, this technology has been proposed as sustainable alternative to refrigeration. However, despite HS was conceived in 1972, it has not attracted interest of researchers and industries until few years ago. Hence, literature, technical knowledge, and working unit design are still lacking. The purpose of the present review is to provide an overview on hyperbaric storage, highlighting its potentialities as a sustainable food storage technology. Moreover, process constraints and unexplored applications of HS conditions are envisaged. Finally, critical aspects that still need to be investigated are highlighted to provide the foundations for future research. The review of the literature indicates that HS is a promising technology, which could extend food microbiological stability and boost the metabolism of microorganisms involved in biotechnological processes, such as fermentations. HS also affects food matrix biomolecules, with particular reference to protein structures and activity, and lipid physical properties. In the investigated matrices (i.e. plant derivatives, meat, fish, and dairy products), HS produced minor sensory changes. On the other hand, lipid oxidation was significantly increased. Proteins and fat structure modification might be used to tailor food ingredient functionality, opening the way for pioneering HS applications. Nevertheless, still several issues, such as poor technical knowledge, scarcity of investigated food matrices, and lack of appropriate packaging solutions, need to be overcome to make HS industrially viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitsuda H, Kawai F, Yamamoto A (1972) Underwater and underground storage of cereal grains. Food Technol 26:50–56

    Google Scholar 

  2. Charm SE, Longmaid HE, Carver J (1977) A simple system for extending refrigerated, nonfrozen preservation of biological material using pressure. Cryobiol. https://doi.org/10.1016/0011-2240(77)90174-2

    Article  Google Scholar 

  3. Fernandes PAR, Moreira SA, Santos MD, Duarte RV, Santos DI, Inácio RS, Alves SP, Bessa RJB, Delgadillo I, Saraiva JA (2019) Hyperbaric storage at variable room temperature — a new preservation methodology for minced meat compared to refrigeration. J Sci Food Agric. https://doi.org/10.1002/jsfa.9540

    Article  PubMed  Google Scholar 

  4. Bermejo-Prada A, Colmant A, Otero L, Guignon B (2017) Industrial viability of the hyperbaric method to store perishable foods at room temperature. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2016.08.014

    Article  Google Scholar 

  5. Goyette B, Charles MT, Vigneault C, Raghavan GSV (2007) Pressure treatment for increasing fruit and vegetable qualities. Stewart Postharvest Rev. https://doi.org/10.2212/spr.2007.3.5

    Article  Google Scholar 

  6. Goyette B, Vigneault C, Charles MT, Raghavan VGS (2012) Effect of hyperbaric treatments on the quality attributes of tomato. Can J Plant Sci. https://doi.org/10.4141/CJPS2011-168

    Article  Google Scholar 

  7. Otero L, Pérez-Mateos M, Holgado F, Márquez-Ruiz G, López-Caballero ME (2019) Hyperbaric cold storage: pressure as an effective tool for extending the shelf-life of refrigerated mackerel (Scomber scombrus, L.). Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2018.05.003

  8. Otero L (2019) Hyperbaric storage at room temperature for fruit juice preservation. Beverages. https://doi.org/10.3390/beverages5030049

    Article  Google Scholar 

  9. Fine RA, Millero FJ (1973) Compressibility of water as a function of temperature and pressure. J Chem Phys 10(1063/1):1679903

    Google Scholar 

  10. Katyal A, Morrison RD (2007) In: Murphy BL and Morrison RD (eds) Introduction to environmental forensics, 2nd edn. Academic Press, Cambridge MA, USA

  11. Patazca E, Koutchma T, Balasubramaniam VM (2007) Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2006.05.014

    Article  Google Scholar 

  12. Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci. https://doi.org/10.1016/S0309-1740(97)00017-X

    Article  PubMed  Google Scholar 

  13. Wang CY, Huang HW, Hsu CP, Yang BB (2016) Recent advances in food processing using high hydrostatic pressure technology. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2012.745479

    Article  PubMed  Google Scholar 

  14. Marquis RE (1976) High-pressure microbial physiology. Adv Microb Physiol. https://doi.org/10.1016/S0065-2911(08)60228-3

    Article  PubMed  Google Scholar 

  15. Rivalain N, Roquain J, Demazeau G (2010) Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2010.04.001

    Article  PubMed  Google Scholar 

  16. Kalichevsky MT, Knorr D, Lillford PJ (1995) Potential food applications of high-pressure effects on ice-water transitions. Trends Food Sci Technol. https://doi.org/10.1016/S0924-2244(00)89109-8

    Article  Google Scholar 

  17. Hiramatsu N, Inoue T, Suzuki M, Sato K (1989) Pressure study on thermal transitions of oleic acid polymorphs by high-pressure differential thermal analysis. Chem Phys Lipids. https://doi.org/10.1016/0009-3084(89)90065-0

    Article  PubMed  Google Scholar 

  18. Macdonald AG (1978) A dilatometric investigation of the effects of general anaesthetics, alcohols and hydrostatic pressure on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine. Biochem Biophys Acta. https://doi.org/10.1017/CBO9781107415324.004

    Article  PubMed  Google Scholar 

  19. Neuman RC, Kauzmann W, Zipp A (1973) Pressure dependence of weak acid ionization in aqueous buffers. J Phys Chem. https://doi.org/10.1021/j100640a025

    Article  Google Scholar 

  20. Read AJ (1982) Ionization constants of aqueous ammonia from 25 to 250 °C and to 2000 bar. J Solut Chem. https://doi.org/10.1007/BF00650397

    Article  Google Scholar 

  21. Gekko K, Fukamizu M (1991) Effect of pressure on the sol-gel transition of agarose. Agric Biol Chem. https://doi.org/10.1080/00021369.1991.10870977

    Article  Google Scholar 

  22. Gekko K, Kasuya K (1985) Effect of pressure on the sol-gel transition of carrageenans. Int J Biol Macromol. https://doi.org/10.1016/0141-8130(85)90028-5

    Article  Google Scholar 

  23. Mazri C, Sánchez L, Ramos SJ, Calvo M, Pérez MD (2012) Effect of high-pressure treatment on denaturation of bovine β-lactoglobulin and α-lactalbumin. Eur Food Res Technol. https://doi.org/10.1007/s00217-012-1695-x

    Article  Google Scholar 

  24. Ikeuchi Y, Suzuki A, Oota T, Hagiwara K, Tatsumi R, Ito T, Balny C (2002) Fluorescence study of the high pressure-induced denaturation of skeletal muscle actin. Eur J Biochem. https://doi.org/10.1046/j.0014-2956.2001.02664.x

    Article  PubMed  Google Scholar 

  25. Sila DN, Smout C, Satara Y, Truong V, Van Loey A, Hendrickx M (2007) Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2005.11.016

    Article  Google Scholar 

  26. Laidler KH (1951) The influence of pressure on the rates of biological reactions. Arch Biochem 30:226–236

    CAS  PubMed  Google Scholar 

  27. Gross M, Auerbach G, Jaenicke R (1993) The catalytic activities of monomeric enzymes show complex pressure dependence. FEBS Lett. https://doi.org/10.1016/0014-5793(93)80120-J

    Article  PubMed  Google Scholar 

  28. Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Eur J Biochem. https://doi.org/10.1111/j.1432-1033.1993.tb18397.x

    Article  PubMed  Google Scholar 

  29. Verlent I, Smout C, Duvetter T, Hendrickx ME, Van Loey A (2005) Effect of temperature and pressure on the activity of purified tomato polygalacturonase in the presence of pectins with different patterns of methyl esterification. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2005.02.003

    Article  Google Scholar 

  30. Aubourg SP, Tabilo-Munizaga G, Reyes JE, Rodríguez A, Pérez-Won M (2010) Effect of high-pressure treatment on microbial activity and lipid oxidation in chilled Coho salmon. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.200900173

    Article  Google Scholar 

  31. Ma HJ, Ledward DA, Zamri AI, Frazier RA, Zhou GH (2007) Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chem. https://doi.org/10.1016/j.foodchem.2007.03.006

    Article  Google Scholar 

  32. Tamaoka T, Itoh N, Hayashi R (1991) High pressure effect on Maillard reaction. Agric Biol Chem. https://doi.org/10.1080/00021369.1991.10870919

    Article  Google Scholar 

  33. Isaacs NS, Coulson M (1996) Effect of pressure on processes modelling the Maillard reaction. J Phys Org Chem. https://doi.org/10.1002/(SICI)1099-1395(199609)9:9%3c639::AID-POC833%3e3.0.CO;2-Q

    Article  Google Scholar 

  34. Meganathan R, Marquis R (1973) Loss of bacterial motility under pressure. Nat. https://doi.org/10.1038/246421a0

    Article  Google Scholar 

  35. Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol. https://doi.org/10.1128/mcb.23.21.7566-7584.2003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J. https://doi.org/10.1016/S0006-3495(69)86466-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Erijman L, Clegg RM (1998) Reversible stalling of transcription elongation complexes by high pressure. Biophys J. https://doi.org/10.1016/S0006-3495(98)77533-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oh JH, Swanson BG (2006) Polymorphic transitions of cocoa butter affected by high hydrostatic pressure and sucrose polyesters. J Am Oil Chem Soc. https://doi.org/10.1007/s11746-006-5155-2

    Article  Google Scholar 

  39. Ichimori H, Hata T, Matsuki H, Kaneshina S (1998) Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. Biochimica et Biophysica Acta - Biomembranes. https://doi.org/10.1016/S0005-2736(98)00165-5

    Article  Google Scholar 

  40. Roche J, Royer CA (2018) Lessons from pressure denaturation of proteins. J R Soc Interface. https://doi.org/10.1098/rsif.2018.0244

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bravo FI, Felipe X, López-Fandiño R, Molina E (2015) Skim milk protein distribution as a result of very high hydrostatic pressure. Food Res Int. https://doi.org/10.1016/j.foodres.2015.03.014

    Article  Google Scholar 

  42. Serment-Moreno V, Barbosa-Cánovas GV, Torres JA, Welti-Chanes J (2014) High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Eng Rev. https://doi.org/10.1007/s12393-014-9075-x

    Article  Google Scholar 

  43. Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2009.08.001

    Article  Google Scholar 

  44. Medina-Meza IG, Barnaba C, Barbosa-Cánovas GV (2014) Effects of high pressure processing on lipid oxidation: a review. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2013.10.012

    Article  Google Scholar 

  45. Martinez-Monteagudo SI, Saldaña MDA (2014) Chemical reactions in food systems at high hydrostatic pressure. Food Eng Rev. https://doi.org/10.1007/s12393-014-9087-6

    Article  Google Scholar 

  46. Kato M, Hayashi R, Tsuda T, Taniguchi K (2002) High pressure-induced changes of biological membrane: study on the membrane-bound Na+/K+-ATPase as a model system. Eur J Biochem. https://doi.org/10.1046/j.0014-2956.2002.02621.x

    Article  PubMed  Google Scholar 

  47. Bermejo-Prada A, López-Caballero ME, Otero L (2016) Hyperbaric storage at room temperature: effect of pressure level and storage time on the natural microbiota of strawberry juice. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2015.10.009

    Article  Google Scholar 

  48. Huang HW, Lung HM, Yang BB, Wang CY (2014) Responses of microorganisms to high hydrostatic pressure processing. Food Control. https://doi.org/10.1016/j.foodcont.2013.12.007

    Article  Google Scholar 

  49. Lakshmanan R, Dalgaard P (2004) Effects of high-pressure processing on Listeria monocytogenes, spoilage microflora and multiple compound quality indices in chilled cold-smoked salmon. J Appl Microbiol. https://doi.org/10.1046/j.1365-2672.2004.02164.x

    Article  PubMed  Google Scholar 

  50. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Ga MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol. https://doi.org/10.1128/AEM.72.5.3476

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tomasula PM, Renye JA, Van Hekken DL, Tunick MH, Kwoczak R, Toht M, Leggett LN, Luchansky JB, Porto-Fett ACS, Phillips JG (2014) Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco. J Dairy Sci. https://doi.org/10.3168/jds.2013-7538

    Article  PubMed  Google Scholar 

  52. Margosch D, Moravek M, Gänzle MG, Märtlbauer E, Vogel RF, Ehrmann MA (2005) Effect of high pressure and heat on bacterial toxins. Food Technol Biotechnol. https://doi.org/10.7939/R31Z42658

    Article  Google Scholar 

  53. Otero L, Pérez-Mateos M, López-Caballero ME (2017) Hyperbaric cold storage versus conventional refrigeration for extending the shelf-life of hake loins. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2017.01.003

    Article  Google Scholar 

  54. Fidalgo LG, Castro R, Trigo M, Aubourg SP, Delgadillo I, Saraiva JA (2019) Quality of fresh atlantic salmon (Salmo salar) under hyperbaric storage at low temperature by evaluation of microbial and physicochemical quality indicators. Food Bioprocess Technol. https://doi.org/10.1007/s11947-019-02346-3

    Article  Google Scholar 

  55. Fidalgo LG, Lemos ÁT, Delgadillo I, Saraiva JA (2018) Microbial and physicochemical evolution during hyperbaric storage at room temperature of fresh atlantic salmon (Salmo salar). Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2017.11.003

    Article  Google Scholar 

  56. Santos MD, Castro R, Delgadillo I, Saraiva JA (2019) Improvement of the refrigerated preservation technology by hyperbaric storage for raw fresh meat. J Sci Food Agric. https://doi.org/10.1002/jsfa.10083

    Article  PubMed  Google Scholar 

  57. Santos MD, Delgadillo I, Saraiva JA (2020) Extended preservation of raw beef and pork meat by hyperbaric storage at room temperature. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14540

    Article  Google Scholar 

  58. Pinto CA, Moreira SA, Fidalgo LG, Santos MD, Delgadillo I, Saraiva JA (2016) Shelf-life extension of watermelon juice preserved by hyperbaric storage at room temperature compared to refrigeration. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2016.04.036

    Article  Google Scholar 

  59. Pinto CA, Moreira SA, Fidalgo LG, Santos MD, Vidal M, Delgadillo I, Saraiva JA (2017) Impact of different hyperbaric storage conditions on microbial, physicochemical and enzymatic parameters of watermelon juice. Food Res Int. https://doi.org/10.1016/j.foodres.2017.05.010

    Article  PubMed  Google Scholar 

  60. Segovia-Bravo KA, Guignon B, Bermejo-Prada A, Sanz PD, Otero L (2012) Hyperbaric storage at room temperature for food preservation: a study in strawberry juice. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2012.02.005

    Article  Google Scholar 

  61. Pinto CA, Martins AP, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA (2019) Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.01.007

    Article  Google Scholar 

  62. Pinto CA, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA (2018) Enhanced control of Bacillus subtilis endospores development by hyperbaric storage at variable/uncontrolled room temperature compared to refrigeration. Food Microbiol. https://doi.org/10.1016/j.fm.2018.03.010

    Article  PubMed  Google Scholar 

  63. Lemos ÁT, Ribeiro AC, Delgadillo I, Saraiva JA (2020) Preservation of raw watermelon juice up to one year by hyperbaric storage at room temperature. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2019.108695

    Article  Google Scholar 

  64. Campus M (2010) High pressure processing of meat, meat products and seafood. Food Eng Rev. https://doi.org/10.1007/s12393-010-9028-y

    Article  Google Scholar 

  65. Lemos ÁT, Ribeiro AC, Fidalgo LG, Delgadillo I, Saraiva JA (2017) Extension of raw watermelon juice shelf-life up to 58 days by hyperbaric storage. Food Chem. https://doi.org/10.1016/j.foodchem.2017.03.110

    Article  PubMed  Google Scholar 

  66. Bermejo-Prada A, Otero L (2016) Effect of hyperbaric storage at room temperature on color degradation of strawberry juice. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2015.08.030

    Article  Google Scholar 

  67. Bermejo-Prada A, Segovia-Bravo KA, Guignon B, Otero L (2015) Effect of hyperbaric storage at room temperature on pectin methylesterase activity and serum viscosity of strawberry juice. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2015.06.004

    Article  Google Scholar 

  68. Bermejo-Prada A, Vega E, Pérez-Mateos M, Otero L (2015) Effect of hyperbaric storage at room temperature on the volatile profile of strawberry juice. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2014.08.020

    Article  Google Scholar 

  69. Van Laack RLJM (1999) In: Xiong YL, Chi-Tang H, Shahidi F (eds) Quality attributes of muscle foods. Kluwer Academic/Plenum Publishers, Dordrecht

  70. Fidalgo LG, Delgadillo I, Saraiva JA (2020a) Autolytic changes involving proteolytic enzymes on atlantic salmon (Salmo salar) preserved by hyperbaric storage. LWT – Food Sci Technol. https://doi.org/10.1016/j.lwt.2019.108755

  71. Fidalgo LG, Simões MMQ, Casal S, Lopes-da-Silva JA, Carta AMS, Delgadillo I, Saraiva JA (2020b) Physicochemical parameters, lipids stability, and volatiles profile of vacuum-packaged fresh atlantic salmon (Salmo salar) loins preserved by hyperbaric storage at 10 °C. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108740

    Article  PubMed  Google Scholar 

  72. Zulkurnain M, Maleky F, Balasubramaniam VM (2016) High pressure processing effects on lipids thermophysical properties and crystallization kinetics. Food Eng Rev. https://doi.org/10.1007/s12393-016-9144-4

    Article  Google Scholar 

  73. Asaka M, Hayashi R (1991) Activation of polyphenoloxidase in pear fruits by high pressure treatment. Agric Biol Chem. https://doi.org/10.1080/00021369.1991.10870965

    Article  Google Scholar 

  74. Boulekou SS, Katsaros GJ, Taoukis PS (2010) Inactivation kinetics of peach pulp pectin methylesterase as a function of high hydrostatic pressure and temperature process conditions. Food Bioprocess Technol. https://doi.org/10.1007/s11947-008-0132-4

    Article  Google Scholar 

  75. Casal V, Gómez R (1999) Effect of high pressure on the viability and enzymatic activity of mesophilic lactic acid bacteria isolated from caprine cheese. J Dairy Sci. https://doi.org/10.3168/jds.S0022-0302(99)75331-2

    Article  Google Scholar 

  76. Dogan C, Erkmen O (2004) High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J Food Eng. https://doi.org/10.1016/S0260-8774(03)00170-5

    Article  Google Scholar 

  77. Fidalgo LG, Santos MD, Queirós RP, Inácio RS, Mota MJ, Lopes RP, Gonçalves MS, Neto RF, Saraiva JA (2014) Hyperbaric storage at and above room temperature of a highly perishable food. Food Bioprocess Technol. https://doi.org/10.1007/s11947-013-1201-x

    Article  Google Scholar 

  78. Heinz V, Knorr D (1996) High pressure inactivation kinetics of Bacillus subtilis cells by a three-state-model considering distributed resistance mechanisms. Food Biotechnol. https://doi.org/10.1080/08905439609549908

    Article  Google Scholar 

  79. Huang Y, Zhang W, Xiong S (2019) Modeling the effect of thermal combined with high-pressure treatment on intramuscular lipid oxidation in pork. J Food Process Eng. https://doi.org/10.1111/jfpe.13240

    Article  Google Scholar 

  80. Katsaros GI, Tsevdou M, Panagiotou T, Taoukis PS (2010) Kinetic study of high pressure microbial and enzyme inactivation and selection of pasteurization conditions for Valencia orange juice. Int J Food Sci Technol. https://doi.org/10.1111/j.1365-2621.2010.02238.x

    Article  Google Scholar 

  81. Kaur BP, Rao PS, Nema PK (2016) Effect of hydrostatic pressure and holding time on physicochemical quality and microbial inactivation kinetics of black tiger shrimp (Penaeus monodon). Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2015.12.002

    Article  Google Scholar 

  82. Li L, Feng L, Yi J, Hua C, Chen F, Liao X, Wang Z, Hu X (2010) High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2010.06.020

    Article  PubMed  Google Scholar 

  83. Parish ME (1998) High pressure inactivation of Saccharomyces cerevisiae, endogenous microflora and pectinmethylesterase in orange juice. J Food Saf. https://doi.org/10.1111/j.1745-4565.1998.tb00202.x

    Article  Google Scholar 

  84. Picard A, Daniel I, Montagnac G, Oger P (2007) In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles. https://doi.org/10.1007/s00792-006-0054-x

    Article  PubMed  Google Scholar 

  85. Pilavtepe-Çelik M, Buzrul S, Alpas H, Bozoǧlu F (2009) Development of a new mathematical model for inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by high hydrostatic pressure in carrot juice and peptone water. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2008.06.043

    Article  Google Scholar 

  86. Suzuki A, Watanabe M, Iwamura K, Ikeuchi Y, Saito M (1990) Effect of high pressure treatment on the ultrastructure and myofibrillar protein of beef skeletal muscle. Agric Biol Chem. https://doi.org/10.1080/00021369.1990.10870479

    Article  PubMed  Google Scholar 

  87. Van Opstal I, Vanmuysen SCM, Wuytack EY, Masschalck B, Michiels CW (2005) Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2004.05.022

    Article  PubMed  Google Scholar 

  88. Lopes RP, Mota MJ, Sousa S, Gomes AM, Delgadillo I, Saraiva JA (2019) Combined effect of pressure and temperature for yogurt production. Food Res Int. https://doi.org/10.1016/j.foodres.2019.04.010

    Article  PubMed  Google Scholar 

  89. Saldo J, Sendra E, Guamis B (2000) High hydrostatic pressure for accelerating ripening of goat’s milk cheese: proteolysis and texture. J Food Sci. https://doi.org/10.1111/j.1365-2621.2000.tb16064.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Federico Basso: data curation, formal analysis, investigation, visualization, writing — original draft, writing — review and editing.

Lara Manzocco: conceptualization, methodology, supervision, writing — original draft, writing — review and editing.

Maria Cristina Nicoli: conceptualization, resources, supervision, writing — review and editing.

Corresponding author

Correspondence to Lara Manzocco.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, F., Manzocco, L. & Nicoli, M.C. Hyperbaric Storage of Food: Applications, Challenges, and Perspectives. Food Eng Rev 14, 20–30 (2022). https://doi.org/10.1007/s12393-021-09296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09296-7

Keywords

Navigation