Skip to main content

Advertisement

Log in

Extraction of Pectin from Passion Fruit Peel

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The addition of pectin to fluid systems alters its gelling, consistency, and texture characteristics. Thus, the use of this acid polysaccharide in product development can generate materials with different technological properties, capable of industrial use. For this, low-cost pectin sources are required. Among these is passion fruit, whose peel is an industrial byproduct that is rich in pectin. It is noteworthy that passion fruit peel is a byproduct generated in large quantities during fruit processing for the production of passion fruit pulp and juice, and that Brazil is the world’s largest fruit producer. In this context, this review presents the characteristics of several methods (conventional extraction, enzyme-assisted extraction, extraction with subcritical fluids, UAE, MAE, UAME, S-MAE, HHP, DESs, and NADESs) used for pectin extraction and explains the effect of the studied variables, with emphasis on the extraction from passion fruit peel. The application of pectins in different industrial systems is also addressed. Pectins are featured as functional food ingredients of high commercial value due to their technological properties. It also has applications in different areas, such as the pharmaceutical and biotechnology industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christiaens S, Buggenhout SV, Houben K, Kermani ZJ, Moelants KRN, Ngouémazong ED, Loey AV, Hendrickx MEG (2015) Process–structure–function relations of pectin in food. Crit Rev Food Sci Nutr 56:1021–1042. https://doi.org/10.1080/10408398.2012.753029

    Article  CAS  Google Scholar 

  2. Muzzarelli RAA, Boudrant J, Meyer D, Manno N, Demarchis M, Paoletti MG (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of carbohydrate polymers science, on the bicentennial chitin. Carbohydr Polym 87:995–1012. https://doi.org/10.1016/j.carbpol.2011.09.063

    Article  CAS  Google Scholar 

  3. Kanse NG, Chirag S, Swapnil S, Vishal S (2017) Extraction of pectin from orange peel’s and its applications: review. International Journal of Innovative Research in Science, Engineering and Technology. doi: https://doi.org/10.15680/ijirset.2017.0609142

  4. Thakur BR, Singh RK, Handa AK, Rao MA (2009) Chemistry and uses of pectin: a review. Crit Rev Food Sci Nutr 37:47–73. https://doi.org/10.1080/10408399709527767

    Article  Google Scholar 

  5. Munhoz CL, Sanjinez-Argandoña EJ, Soares-Junior MS (2010) Extraction of dehydrated guava pectin. Food Sci Technol 30:119–125. https://doi.org/10.1590/s0101-20612010005000013

    Article  Google Scholar 

  6. Koubala BB, Kansci G, Mbome LI, Crépeau MJ, Thibault JF, Ralet MC (2008a) Effect of extraction conditions on some physicochemical characteristics of pectins from “Améliorée” and “Mango” mango peels. Food Hydrocoll 22:1345–1351. https://doi.org/10.1016/j.foodhyd.2007.07.005

    Article  CAS  Google Scholar 

  7. Koubala BB, Mbome LI, Kansci G, Mbiapo FT, Crepeau MJ, Thibault JF, Ralet MC (2008b) Physicochemical properties of pectins from amberella peels (Spondias cytherea) obtained using different extraction conditions. Food Chem 106:1202–1207. https://doi.org/10.1016/j.foodchem.2007.07.065

    Article  CAS  Google Scholar 

  8. Kulkarni SG, Vijayanand P (2010) Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. Flavicarpa L.). Food Science and Technology. doi: https://doi.org/10.1016/j.lwt.2009.11.006

  9. Yapo BM (2009b) Pectin quantity, composition and physicochemical behavior as influenced by the purification process. Food Res Int 42:1197–1202. https://doi.org/10.1016/j.foodres.2009.06.002

    Article  CAS  Google Scholar 

  10. Liang RH, Chen J, Liu W, Yu W, Yuan M, Zhou WQ (2012) Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydrate Polymers. doi: https://doi.org/10.1016/j.carbpol.2011.07.013

  11. FAOSTAT - Production Data 2019. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Acessed 09 Jun 2020

  12. Oliveira LF, Nascimento MRF, Borges SV, Ribeiro PCN, Ruback VB (2002) Alternative use of yellow passion fruit (Passiflora edulis f. Var. Flavicarpa) peel for sweet production in syrup. Food Science and Technology. doi: https://doi.org/10.1590/s0101-20612002000300011

  13. Houben K, Christiaens S, Ngouémazong DE, Buggenhout SV, Loey AMV, Hendricks ME (2014) The effect of endogenous pectinases on the consistency of tomato–carrot purée mixes. Food Bioprocess Technol 7:2570–2580. https://doi.org/10.1007/s11947-014-1284-z

    Article  CAS  Google Scholar 

  14. Lopez-Sanchez P, Nijsse J, Blonk HCG, Bialek L, Schumm S, Langton M (2011) Effect of mechanical and thermal treatments on themicrostructure and rheological of carrot, broccoli and tomato dispersions. J Sci Food Agric 91:207–217. https://doi.org/10.1002/jfsa.4168

    Article  CAS  PubMed  Google Scholar 

  15. Ngouémazong ED, Christiaens S, Shpielman A, Loey AV, Hendrickx M (2015) The emulsifying and emulsion-stabilizing properties of pectin: a review. Compr Rev Food Sci Food Saf 14:705–718. https://doi.org/10.1111/1541-4337.12160

    Article  CAS  Google Scholar 

  16. Novosel‘Skaya IL, Voropaeva NL, Semenova LN, Rashidova SS (2000) Trends in the science and applications of pectins. Chem Nat Compd 36:1–10. https://doi.org/10.1007/bf02234898

    Article  Google Scholar 

  17. VanBuggenhout S, Sila D, Duvetter T, VanLoey A, Hendrickx M (2009) Pectins in processed fruits and vegetables: part III-texture engineering. Compr Rev Food Sci Food Saf 8:105–117. https://doi.org/10.1111/j.1541-4337-2009-00072-x

    Article  CAS  Google Scholar 

  18. Bagherian H, Ashtiani FZ, Fouladitajar A, Moshtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50:1237–1243. https://doi.org/10.1016/j.cep.2011.08.002

    Article  CAS  Google Scholar 

  19. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395. https://doi.org/10.1104/pp.110.156588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  21. Zandleven J, Sorensen SO, Harholt J, Beldman G, Schols HA, Scheller HV, Voragen AJ (2007) Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry. Doi: https://doi.org/10.1016/j.phytochem.2007.01.016

  22. Shpigelman A, Kyomugasho C, Christiaens S, Loey AMV, Hendrickx ME (2015) The effect of high pressure homogenization on pectin: importance of pectin source and pH. Food Hydrocoll 43:189–198. https://doi.org/10.1016/j.foodhyd.2014.05.019

    Article  CAS  Google Scholar 

  23. Racape E, Thibault JF, Reitsma JCE, Pilnik W (1989) Properties of amidated pectins. II Polyelectrolyte behavior and calcium binding of amidated pectins and amidated pectic acids. Biopolymers 28:1435–1448. https://doi.org/10.1002/bip.360280809

    Article  CAS  Google Scholar 

  24. Sinitsya A, Copíkova J, Prutyanov V, Skoblya S, Machovic V (2000) Amidation of highly methoxylated citrus pectin with primary amines. Carbohydr Polym 42:359–368. https://doi.org/10.1016/s0144-8617(99)00184-8

    Article  CAS  Google Scholar 

  25. Funami T, Zhang G, Hiroe M, Noda S, Nakauma M, Asai I, Cowman MK, Al-Assaf S, Phillips GO (2007) Effects of the proteinaceous moiety on the emulsifying properties of sugar beet pectin. Food Hydrocoll 21:1319–1329. https://doi.org/10.1016/j.foodhyd.2006.10.009

    Article  CAS  Google Scholar 

  26. Morris GA, Rallet MA (2012a) The effect of neutral sugar distribution on the dilute solution conformation of sugar beet pectin. Carbohydr Polym 88:1488–1491. https://doi.org/10.1016/j.carbpol.2012.02.020

    Article  CAS  Google Scholar 

  27. Morris GA, Rallet MA (2012b) A copolymer analysis approach to estimate the neutral sugar distribution of sugar beet pectin using size exclusion chromatography. Carbohydr Polym 87:1139–1143. https://doi.org/10.1016/j.carbpol.2011.08.077

    Article  CAS  Google Scholar 

  28. Yapo BM, Koffi KL (2006) Yellow passion fruit rinds a potential source of low-methoxyl pectin. Journal of Agricultural and Food Chemistry. doi: https://doi.org/10.1021/j052605q

  29. Yapo BM, Lerouge P, Thibaul TJF, Ralet MC (2007) Pectins from citrus peel cells contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435. https://doi.org/10.1016/j.carbpol.2006.12.024

    Article  CAS  Google Scholar 

  30. Williats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104. https://doi.org/10.1016/j.tifs.2005.10.008

    Article  CAS  Google Scholar 

  31. Kpodo FM, Agbenorhevi JK, Alba K, Oduro IN, Morris GA, Kontogiorgos V (2018) Structure-function relationships in pectin emulsification. Food Biophysics 13:71–79. https://doi.org/10.1007/s11483-017-9513-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leroux J, Langendorff V, Schick G, Vaishnav V, Mazoyer J (2003) Emulsion stabilizing properties of pectin. Food Hydrocoll 17:455–462. https://doi.org/10.1016/s0268-005x(03)00027-4

    Article  CAS  Google Scholar 

  33. Akhtar M, Dickinson E, Mazoyer J, Langendorff V (2002) Emulsion stabilizing properties of depolymerized pectin. Food Hydrocoll 16:249–256. https://doi.org/10.1016/s0268-005x(01)00095-9

    Article  CAS  Google Scholar 

  34. Alba K, Kontogiorgos, V (2016) Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocolloids. doi: https://doi.org/10.1016/j.foodhyd.2016.07.026

  35. Siew CK, Williams PA (2008) Role of protein and ferulic acid in the emulsification properties of sugar beet pectin. J Agric Food Chem 56:4164–4171. https://doi.org/10.1021/jf073358o

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt US, Koch L, Rentschler C, Kurz T, Endre HU, Schuchmann HP (2014) Effect of molecular weight reduction, acetylation and esterification on the emulsification properties of citrus pectin. Food Biophysics 10:217–227. https://doi.org/10.1007/s11483-014-9380-1

    Article  Google Scholar 

  37. Dea ICM, Madden JK (1986) Acetylated pectin polysaccharides of sugar beet. Food Hydrocoll 1:71–88. https://doi.org/10.1016/s0268-005x(86)80009-1

    Article  CAS  Google Scholar 

  38. Siew CK, Williams PA, Cui SW, Wang Q (2008) Characterization of the surface-active components of sugar beet pectin and the hydrodynamic thickness of the adsorbed pectin layer. J Agric Food Chem 56:8111–8120. https://doi.org/10.1021/jf801588a

    Article  CAS  PubMed  Google Scholar 

  39. Funami T, Nakauma M, Ishihara S, Tanaka R, Inoue T, Phillips GO (2011) Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll 25:221–229. https://doi.org/10.1016/j.foodhyd.2009.11.017

    Article  CAS  Google Scholar 

  40. Zhang W, Xu P, Zhang H (2015) Pectin in cancer therapy: a review. Food Sci Technol 44:258–271. https://doi.org/10.1016/j.tifs.2015.04.001

    Article  CAS  Google Scholar 

  41. Rubio-Senent F, Rodríguez-Gutiérrez G, Lama-Munõz A, García A, Fernández-Bolaños J (2015) Novel pectin present in new olive mill wastewater with similar emulsifying and better biological properties than citrus pectin. Food Hydrocoll 50:237–246. https://doi.org/10.1016/j.foodhyd.2015.03.030

    Article  CAS  Google Scholar 

  42. Salehi F, Behboudi H, Kavoosi G, Ardestani SK (2018) Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: a comparison of the biological characteristics of citrus pectin and apple pectin. Sci Rep 8:13902. https://doi.org/10.1038/s41598-018-32308-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Ye X, Xue SJ, Zhang X, Liu D, Meng R, Chen S (2012) Effect of high-intensity ultrasound on the physicochecimal properties and nanostructure of citrus pectin. J Sci Food Agric 93:2028–2036. https://doi.org/10.1002/jsfa.6011

    Article  CAS  Google Scholar 

  44. Chen J, Liu W, Liu CM, Li T, Liang RH, Luo SJ (2015) Pectin modifications: a review. Food Science and Nutrition 55:1684–1698. https://doi.org/10.1080/10408398.2012.718722

    Article  CAS  PubMed  Google Scholar 

  45. Ralet MC, Dronnet V, Buchholt HC, Thibault JF (2001) Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydr Res 336:117–125. https://doi.org/10.1016/s0008-6215(01)00248-8

    Article  CAS  PubMed  Google Scholar 

  46. Fraeye I, Roeck A, Duvetter T, Verlent I, Hendrickx M, Van-Loey A (2007) Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chem 105:555–563. https://doi.org/10.1016/j.foodchem.2007.04.009

    Article  CAS  Google Scholar 

  47. Iglesias M, Lozano J (2004) Extraction and characterization of sunflower pectin. J Food Eng 62:215–223. https://doi.org/10.1016/s0260-8774(03)00234-6

    Article  Google Scholar 

  48. Bhatia MS, Deshmukh R, Choudhari P, Bhatia NM (2010) Chemical modification of pectins, characterization and evaluation for drug delivery. Sci Pharm 76:775–784. https://doi.org/10.3797/scipharm.0805-23

    Article  CAS  Google Scholar 

  49. Fraeye I, Duvetter T, Doungla E, Loey AV, Hendrickx M (2010) Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci Technol 21:219–228. https://doi.org/10.1016/j.tifs.2010.02.001

    Article  CAS  Google Scholar 

  50. Lofgren C, Guillotin S, Hermansson AM (2006) Microstructure and kinetic rheological behavior of amidated and nonamidated LM pectin gels. Biomacromolecules. 7:114–121. https://doi.org/10.1021/bm050459r

    Article  CAS  PubMed  Google Scholar 

  51. Fan L, Cao M, Gao S, Wang W, Peng K, Tan C, Wen F, Tao S, Xie W (2012a) Preparation and characterization of a quaternary ammonium derivative of pectin. Carbohydr Polym 88:707–712. https://doi.org/10.1016/j.carbpol.2012.01.021

    Article  CAS  Google Scholar 

  52. Smart JD (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57:1556–1568. https://doi.org/10.1016/j.addr.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  53. Sharma R, Ahuja M, Kaur H (2012) Thiolated pectin nanoparticles: preparation, characterization and ex vivo corneal permeation study. Carbohydr Polym 87:1606–1610. https://doi.org/10.1016/j.carbpol.2011.09.065

    Article  CAS  Google Scholar 

  54. Maas NC, Gracher AHP, Sassaki GL, Gorin PAJ, Iacomini M, Cipriani TR (2012) Sulfation pattern of citrus pectin and its carboxy-reduced derivatives: influence on anticoagulant and antithrombotic effects. Carbohydr Polym 89:1081–1087. https://doi.org/10.1016/j.carbpol.2012.03.070

    Article  CAS  PubMed  Google Scholar 

  55. Martinichen-Herrero JC, Carbonero ER, Gorin PAJ, Iacomini M (2005) Anticoagulant and antithrombotic activity of a sulfate obtained from a glucan component of the lichen Parmotrema mantiqueirense Hale. Carbohydr Polym 60:7–13. https://doi.org/10.1016/j.carbpol.2004.11.014

    Article  CAS  Google Scholar 

  56. Fan L, Gao S, Wang L, Wu P, Cao M, Zheng H, Xie W, Zhou J (2012b) Synthesis and anticoagulant activity of pectin sulfates. J Appl Polym Sci 124:2171–2178. https://doi.org/10.1002/app.35239

    Article  CAS  Google Scholar 

  57. Takei T, Sato M, Ijima H, Kawakami K (2010) In situ gellable oxidized citrus pectin for localized delivery of anticancer drugs and prevention of homotypic cancer cell aggregation. Biomacromolecules. 11:3525–3530. https://doi.org/10.1021/bm1010068

    Article  CAS  PubMed  Google Scholar 

  58. Huismann MMH, Oosterveld A, Schols HA (2004) Fast determination of the degree of methyl esterification of pectins by head-space GC. Food Hydrocolloids. doi: https://doi.org/10.1016/j.foodhyd.2003.11.006

  59. Turquois T, Rinaudo M, Taravel FR, Heyraud A (1999) Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp: influence of extrinsic parameters on their gelling properties. Food Hydrocoll 13:255–262. https://doi.org/10.1016/s0268-005x(99)00007-7

    Article  CAS  Google Scholar 

  60. Elgharbawy AAM, Hayyan A, Hayyan M, Mirghani MES, Salleh HM, Rashid SN, Ngoh GC, Liew SQ, Nor MRM, Zulkifli MZ, Alias Y (2019) Natural deep eutectic solvent-assisted pectin extraction from pomelo peel using sonorector: experimental optimization approach. Processes. 7. https://doi.org/10.3390/pr7070416

  61. Pinheiro ER, Silva IMDA, Gonzaga LV, Lover ER, Teófilo RF, Ferreira MMC, Amboni RDMC (2008) Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresour Technol 99:5561–5566. https://doi.org/10.1016/j.iortech.2007.10.058

    Article  CAS  PubMed  Google Scholar 

  62. Sundar A, Rubila S, Jayabalan R, Ranganathan TVA (2012) Review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses. Sci Rep. https://doi.org/10.4172/scientificreports.550

  63. Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A (2018) Pectin and pectin-based composite materials: beyond food texture. Molecules. doi: https://doi.org/10.3390/molecules23040942, 23

  64. Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, O’neill MA (2004) Occurrence of rhamnogalacturonan II primary cell wall polysaccharide in pteridophytes, lycophytes and bryophytes: implication for the evolution of vascular plants. Plant Physiol 134:339–351. https://doi.org/10.1104/pp.103.030072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan SY, Choo WS, Young DJ, Loh XJ (2017) Pectin as a rheology modifier: origin, structure, commercial production and rheology. Carbohydr Polym 161:118–139. https://doi.org/10.1016/j.carbpol.2016.12.033

    Article  CAS  PubMed  Google Scholar 

  66. Kumar A, Chauhan GS (2010) Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr Polym 82:454–459. https://doi.org/10.1016/j.carbpol.2010.05.001

    Article  CAS  Google Scholar 

  67. Oliveira C, Giordani D, Lutckemier R, Gurak PD, Clarera-Oliveira F, Marczak LDF (2016) Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Sci Technol 71:110–115. https://doi.org/10.1016/j.lwt.2016.03.027

    Article  CAS  Google Scholar 

  68. Begum R, Aziz MG, Uddin MB, Yusof YA (2014) Characterization of jackfruit (Artocarpus heterophyllus) waste pectin as influenced by various extraction conditions. Agriculture and Agricultural Science Procedia 2:244–251. https://doi.org/10.1016/j.Aspro.2014.11.035

    Article  Google Scholar 

  69. Kaya M, Sousa AG, Crépeau MJ, Sorensen SO, Ralet MC (2014) Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann Bot 114:1319–1326. https://doi.org/10.1093/aob/mcu150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seixas F, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLO, Jagadevan S, Gimenes ML (2014) Extraction of pectin from passion fruit peel (Passiflora edulis f. Flavicarpa) by microwave-induced heating. Food Hydrocolloids. doi: https://doi.org/10.1016/j.foodhyd.2013.12.001

  71. Chan SY, Choo WS (2013) Effect of extraction conditions on yield and chemical properties of pectin from cocoa husks. Food Chem 141:3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097

    Article  CAS  PubMed  Google Scholar 

  72. Gan CY, Latiff AA (2011) Extraction of pectic-polysaccharide antioxidant from mangosteen (Garcinia mangostana) rind: optimization using response surface methodology. Carbohydr Polym 83:600–607. https://doi.org/10.1016/j.carbpol.2010.08.025

    Article  CAS  Google Scholar 

  73. Canteri-Schemin MH, Fertonani HCR, Waszczynskyj N, Wosiacki G (2005) Extraction of pectin from apple pomace. Brazilian Archives of Biology ang Technology 48:259–266. https://doi.org/10.1590/s1516-89132005000200013

    Article  CAS  Google Scholar 

  74. Liew SQ, Chin NL, Yusof YA (2014) Extraction and characterization of pectin from passion fruit peels. Agriculture and Agricultural Science Procedia 2:231–236. https://doi.org/10.1016/j.aaspro.2014.11.033

    Article  Google Scholar 

  75. Oliveira CF, Giordani D, Gurak PD, Clarera-Olivera F, Marczak LDF (2015) Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innov Food Sci Emerg Technol 29:201–208. https://doi.org/10.1016/j.ifset.2015.02.005

    Article  CAS  Google Scholar 

  76. Liew SQ, Ngoh GC, Yusoff R, Teoh WH (2018) Acid and deep eutectic solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatalysis and Agricultural Biotechnoly. doi: https://doi.org/10.1016/j.bcab.2017.11.001

  77. García A, Rodríguez-Juan E, Rodrígues-Gutiérrez G, Rios JJ, Fernández-Bolaños J (2016) Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem 197:554–561. https://doi.org/10.1016/j.foodchem.2015.10.131

    Article  CAS  PubMed  Google Scholar 

  78. Canteri MHG, Moreno L, Wosiacki G, Scheer AP (2010) Pectina: from raw material to final product. Polymers. https://doi.org/10.1590/s0104-1428201200500002

  79. Freitas CMP, Costa AR, Rodrigues FA, Júnior MMJ, Dias MMS, Sousa RCS (2020) Optimization of pectin extraction from passion fruit (Passiflora edulis flavicarpa) using the response surface method. Brazilian Journal of Development. Doi: https://doi.org/10.34117/bjdv6n5-132

  80. Fissore EN, Ponce NMA, Pla ME, Stortz CA, Rojas AM, Gerschenson LN (2010) Characterization of acid-extracted pectin-enriched products obtained from red beet (Beta vulgaris L. var. Conditiva) and butternut (Cucurbita moschata Shower x Poiret). Journal of Agricultural and Food Chemistry. Doi: https://doi.org/10.1021/jf903844b

  81. Vriesmann LC, Teófilo RF, Petkowicz CLO (2012) Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. Food Science and Technology. doi: https://doi.org/10.1016/j.lwt.2012.04.018

  82. Yapo BM (2009a) Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature. J Agric Food Chem 57:1572–1578. https://doi.org/10.1021/jf802969m

    Article  CAS  PubMed  Google Scholar 

  83. Yeoh S, Shi J, Langrish TAG (2008) Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination. 218:229–237. https://doi.org/10.1016/j.desal.2007.02.018

    Article  CAS  Google Scholar 

  84. Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocoll 62:239–250. https://doi.org/10.1016/j.foodhyd.2016.08.015

    Article  CAS  Google Scholar 

  85. Norton IT, Fryer P, Moore S (2006) Product/process integration in food manufacturing: engineering sustained health. AICHE J 52:1632–1640. https://doi.org/10.1002/aic.10815

    Article  CAS  Google Scholar 

  86. Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30:37–44. https://doi.org/10.1016/j.tibtech.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  87. Zakaria SM, Kamal SMM (2015) Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients. Food Engineering Reviews. doi: https://doi.org/10.1007/s12393-015-9119-x

  88. Koomyart I, Nagamizu H, Khuwijitjaru P, Kobayashi T, Shiga H, Yoshii H, Adachi S (2016) Using severity factor as a parameter to optimize krill treatment under subcritical water conditions. Biosci Biotechnol Biochem 80:2192–2197. https://doi.org/10.1080/09168451.2016.1204220

    Article  CAS  PubMed  Google Scholar 

  89. Maurya DP, Singla A, Negi S (2015) Na overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. doi: https://doi.org/10.1007/s13205-015-0279-4

  90. Rojas R, Contreras-Esquivel JC, Orozco-Esquivel MT, Munoz C, Aguirre-Joya JA, Aguilar CN (2015) Mango peel as source of antioxidants and pectin: microwave assisted extraction. Waste and Biomass Valorization 6:1095–1102. https://doi.org/10.1007/s12649-015-9401-4

    Article  CAS  Google Scholar 

  91. Durante M, Lenucci MS, Mita G (2014) Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review. International journal of molecular Siences. doi: https://doi.org/10.3390/ijms15046725

  92. Garcia-Mendoza MP, Paula JT, Paviani LC, Cabral FA, Martinez-Correa HA (2015) Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT Food Sci Technol 62:131–137. https://doi.org/10.1016/j.lwt.2015.01.026

    Article  CAS  Google Scholar 

  93. Jaime L, Vázquez E, Fornari T, López-Hazas MC, García-Risco MR, Santoyo S, Reglero G (2014) Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO2 extraction. Journal of the Science of Food and Agriculture. doi: https://doi.org/10.1002/jsfa.6788

  94. Chen J, Li J, Sun A-D, Zhang B-O, Qin S-G, Zhang Y-Q (2014) Supercritical CO2 extraction and pre-column derivatization ofpolysaccharides from Artemisia sphaerocephala Krasch. seedsvia gas chromatography. Industrial Crops and Products. doi: https://doi.org/10.1016/j.indcrop.2014.06.013

  95. Zou X, Liu Y, Tao C, Liu Y, Liu M, Wu J, Lv Z (2017) CO2 supercritical fluid extraction and characterization of polysaccharide from bamboo (Phyllostachys heterocycla) leaves. Journal of Food Measurement and Characterization 12:35–44. https://doi.org/10.1007/s11694-017-9614-2

    Article  Google Scholar 

  96. Khajavi SH, Kimura Y, Oomori T, Matsuno R, Adachi S (2005) Degradation kinetics of monosaccharides in subcritical water. Journal of Food Engineering. doi: https://doi.org/10.1016/j.jfoodeng.2004.06.004

  97. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaine NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  CAS  Google Scholar 

  98. Luque-García JL, Castro MLD (2003) Ultrasound: a powerful tool for leaching. Trends Anal Chem 22:41–47. https://doi.org/10.1016/so165-9936(03)00102-x

    Article  Google Scholar 

  99. Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424. https://doi.org/10.1007/s11947-011-0573-z

    Article  CAS  Google Scholar 

  100. Sengar AS, Rawson A, Muthiah M, Kalakandan SK (2019) Comparison of different ultrasound assisted extraction techniques for pectin prom tomato processing waste. Ultrason Sonochem 61:104812. https://doi.org/10.1016/j.ultsonch.2019.104812

    Article  CAS  PubMed  Google Scholar 

  101. Li F, Raza A, Wang YW, Xu XQ, Chen GH (2017) Optimization of surfactantmediated, ultrasonic-assisted extraction of antioxidant polyphenols from rattan tea (Ampelopsis grossedentata) using response surface methodology. Pharmacogn Mag doi: https://doi.org/10.4103/pm.pm_159_16, 13, 446

  102. Hosseinzadeh R, Khorsandi K, Hemmaty S (2013) Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts. PLoS One 8:e57353. https://doi.org/10.1371/journal.pone.0057353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Su DL, Li PJ, Quek SY, Huang ZQ, Yuan YJ, Li GY, Shan Y (2019) Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chem 286:1–7. https://doi.org/10.1016/j.foodchem.2019.01.200

    Article  CAS  PubMed  Google Scholar 

  104. Guo X, Han HD, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparasion. Carbohydr Polym 88:441–448. https://doi.org/10.1016/j.carbpol.2011.12.026

    Article  CAS  Google Scholar 

  105. Xie F, Zhang W, Lan X, Gong S, Wu J, Wang Z (2018) Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr Polym 196:474–482. https://doi.org/10.1016/j.carbpol.2018.05.061

    Article  CAS  PubMed  Google Scholar 

  106. Naghshineh M, Olsen K, Georgiou CA (2013) Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem 136:472–478. https://doi.org/10.1016/j.foodchem.2012.08.036

    Article  CAS  PubMed  Google Scholar 

  107. Peng X, Mu T, Zhang M, Sun H, Chen J, Yu M (2016) Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin. Food Hydrocoll 60:161–169. https://doi.org/10.1016/j.foodhyd.2016.03.025

    Article  CAS  Google Scholar 

  108. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017) New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–23. https://doi.org/10.1016/j.aca.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  109. Shafie MH, Yusof R, Gan CY (2019) Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: optimization and characterization studies. Carbohydr Polym 216:303–311. https://doi.org/10.1016/j.carbpol.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  110. Cunha SC, Fernandes JO (2018) Extraction techniques with deep eutectic solvents. TrAC Trends Anal Chem 105:225–239. https://doi.org/10.1016/j.trac.2018.05.001

    Article  CAS  Google Scholar 

  111. Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing: a review. Carbohydr Polym 200:361–380. https://doi.org/10.1016/j.carbpol.2018.07.078

    Article  CAS  PubMed  Google Scholar 

  112. Dai Y, Rozema E, Verpoorte R, Choi YH (2016) Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J Chromatogr A 1434:50–56. https://doi.org/10.1016/j.chroma.2016.01.037

    Article  CAS  PubMed  Google Scholar 

  113. Aroso IM, Paiva A, Reis RL, Duarte ARC (2017) Natural deep eutectic solventes from choline chloride and betaine: physicochemical properties. J Mol Liq 241:654–661. https://doi.org/10.1016/j.molliq.2017.06.051

    Article  CAS  Google Scholar 

  114. Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, Mohd-Ali O (2016) Natural deep eutectic solvents: cytotoxic profile. SpringerPlus. 5:913. https://doi.org/10.1186/s40064-016-2575-9

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jablonský M, Skulcová A, Kamenská L, Vrska M, Sima J (2015) Deep eutectic solvents: fractionation of wheat traw. Bioresources. Doi: https://doi.org/10.15376/biores.10.4.8039-8047

  116. Tommasi E, Cravotto G, Galleti P, Grillo G, Mazzotti M, Sacchetti G, Samorì C, Tabasso S, Tacchini M, Tagliavini E (2017) Enhanced and selective lipid extraction from the Microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustainable Chemistry and Engineering. doi: https://doi.org/10.1021/acssuschemeng.7b02074

  117. Vasco-Correa J, Zapata AD (2017) Enzymatic extraction of pectin from passion fruit peel (Passiflora edulis f. Flavicarpa) at laboratory and bench scale. LWT Food Science and Technology. doi: https://doi.org/10.1016/j.lwt.2017.02.024

  118. Souza CG, Rodrigues THS, Silva LMA, Ribeiro PRV, Brito ES (2017) Sequential extraction of flavonoids and pectin from yellow passion fruit rind using pressurized solvent or ultrasound. J Sci Food Agric 98:1362–1368. https://doi.org/10.1002/jsfa.8601

    Article  CAS  PubMed  Google Scholar 

  119. Nakamura A, Yoshida R, Maeda H, Corredig M (2006) The stabilizing behavior of soybean soluble polysaccharide and pectin in acidified milk beverages. Int Dairy J 16:361–369. https://doi.org/10.1016/j.idairyj.2005.01.014

    Article  CAS  Google Scholar 

  120. Zulueta A, Esteve MJ, Frasquet I, Frigola A (2007) Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chem 103:1365–1374. https://doi.org/10.1016/j.foodchem.2006.10.052

    Article  CAS  Google Scholar 

  121. Joudaki H, Mousavi M, Safari M, Razavi SH, Emam-Djomeh Z, Gharibzahedi SMT (2013) A practical optimization on salt/high-methoxyl pectin interaction to design a stable formulation for Doogh. Carbohydr Polym 97:376–383. https://doi.org/10.1016/j.carbpol.2013.05.056

    Article  CAS  PubMed  Google Scholar 

  122. Pereira CM, Marques MF, Hatano MK, Castro IA (2010) Effect of the partial substitution of soy proteins by highly methyl esterified pectin on chemical and sensory characteristics of sausages. Food Sci Technol Int 16:401–407. https://doi.org/10.1177/1082013210366888

    Article  CAS  PubMed  Google Scholar 

  123. Lupi FR, Gabriele D, Seta L, Baldino N, Cindio B, Marino R (2014) Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheol Acta 54:41–52. https://doi.org/10.1007/s00397-014-0809-8

    Article  CAS  Google Scholar 

  124. Qiu L, Zhao G, Wu H, Jiang L, Li X, Liu J (2010) Investigation of combined effects of independent variables on extraction from banana peel using response surface methodology. Carbohydr Polym 80:326–331. https://doi.org/10.1016/j.carbpol.2010.01.018

    Article  CAS  Google Scholar 

  125. Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, the versatile polysaccharide polysaccharide present in plant cell walls. Struct Chem 20:263–275. https://doi.org/10.1007/s11224-009-9442-z

    Article  CAS  Google Scholar 

  126. Silva DC, Freitas ALP, Pessoa CDS, Paula RCM, Mosque JX, Leal LKAM, Brito GAC, Gonçalves DO, Viana GS (2011) Pectin from Passiflora edulis shows anti-inflammatory action as well as hypoglycemic and hypotriglyceridemic properties in diabetic rats. J Med Food 14:1118–1126. https://doi.org/10.1089/jmf.2010.0220

    Article  CAS  PubMed  Google Scholar 

  127. Annadurai G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190. https://doi.org/10.2166/wst.2003.0049

    Article  CAS  Google Scholar 

  128. Kumar R, Kumar A, Chauhan KR, Gupta R, Ahn JH, Chauhan GS (2009) Removal of as (V) from water by pectin based active hydrogels following geochemical approach. Bioresour Technol 100:1474–1477. https://doi.org/10.1016/j.biortech.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  129. Singha NR, Karmakar M, Mahapatra M, Mondal H, Dutta A, Roy C, Chattopadhyay PK (2017) Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M (ii): determination of physicochemical changes in loaded hydrogels. Polym Chem 8:3211–3237. https://doi.org/10.1039/c7py00316a

    Article  CAS  Google Scholar 

  130. Jackson CL, Dreaden TM, Theobald LK, Tran NM, Beal TL, Eid M, Gao MY, Shirley RB, Stoffel MT, Kumar MV, Mohnen D (2007) Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology. 17:805–819. https://doi.org/10.1093/glycob/cwm054

    Article  CAS  PubMed  Google Scholar 

  131. Wicker L, Kim Y, Kim MJ, Thirkield B, Lin Z, Jung J (2014) Pectin as a bioactive polysaccharide-extracting tailored function from less. Food Hydrocolloids. doi: https://doi.org/10.1016/j.foodhyd.2014.01.002

  132. Cuq B, Gontard N, Guilbert S (1995) Edible film and coating as active layers. In: Rooney ML (ed) Active food packaging. Blackie Academic & Professional, London

    Google Scholar 

  133. Ji F, Li J, Qin Z, Yang B, Zhang E, Dong D, Wang J, Wen Y, Tian ​​L, Yao F (2017) Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr Polym doi: https://doi.org/10.1016/j.carbpol.2017.08.107, 177, 86, 96

  134. Krivorotova T, Cirkovas A, Maciulyte S, Staneviciene R, Budriene S, Serviene E, Sereikaite J (2016) Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll 54:49–56. https://doi.org/10.1016/j.foodhyd.2015.09.015

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Minas Gerais State Research Support Foundation (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. P. FREITAS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FREITAS, C.M.P., SOUSA, R.C.S., DIAS, M.M.S. et al. Extraction of Pectin from Passion Fruit Peel. Food Eng Rev 12, 460–472 (2020). https://doi.org/10.1007/s12393-020-09254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09254-9

Keywords

Navigation