Skip to main content
Log in

Valorization of Passion and Tamarillo Fruit Waste for Extraction and Characterization of Pectin

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The food industry generates millions of tonnes of waste annually from citrus, apple, and other fruits. Commercial pectin extracted from citrus and apple pomace is commonly used in food industries, but there is limited research on extracting pectin from other fruit wastes. Passion and tamarillo fruits are excellent sources of dietary fiber, hydrocolloids, polyphenols, and micronutrients. This manuscript discusses the optimization and characterization of pectin extracted from two varieties of passion fruit peel (P. edulis (PE) & P. ligularis (PL)) and tamarillo (TT) fruit pomace using different extraction methods with different extractants and compared the pectin quality. The pectin yield was higher in TM (Tamarillo, microwave extraction method) and PeC (Passiflora edulis, conventional extraction method) with tartaric acid used as an extractant. Nitric acid extraction of TT and PE had significantly higher AUA values in conventional and microwave extraction methods respectively, with a relatively highest yield of pectin. In this study, pectin extracted from TT and PE by conventional methods showed higher DE values, indicating HMP (High Methoxyl Pectin). FTIR (Fourier-transform infrared spectroscopy) spectral analysis showed that the extracted pectin had a characteristic band similar to commercial pectin. The surface morphological characteristics of the peel were flaky, rough, and uneven in texture, whereas the pectin had a smoother surface with a slightly flaky texture. The flow behaviour index of extracted pectin was less than one, indicating shear thinning behaviour. The presence of protein in the extracted pectin may enhance the stability of the emulsions, used in various food applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data sets generated and analysed in this study are available from the corresponding author on reasonable request.

References

  1. Abboud, K.Y., Iacomini, M., Simas, F.F., Cordeiro, L.M.: High methoxyl pectin from the soluble dietary fiber of passion fruit peel forms weak gel without the requirement of sugar addition. Carbohydrate Polymers 246, 116616 (2020). https://doi.org/10.1016/j.carbpol.2020.116616

    Article  Google Scholar 

  2. Acosta-Quezada, P.G., Raigón, M.D., Riofrío-Cuenca, T., García-Martínez, M.D., Plazas, M., Burneo, J.I., Prohens, J.: Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 169, 327–335 (2015). https://doi.org/10.1016/j.foodchem.2014.07.152

    Article  Google Scholar 

  3. AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists(14th Eds). AOAC Washington, DC (1985)

  4. AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists (18th Eds). AOAC Gaithersburgs, MD (2006)

  5. AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists(13th Eds). AOAC Washington, DC.(1980)

  6. Azad, A.K.M., Ali, M.A., Akter, M.S., Rahman, M.J., Ahmed, M.: Isolation and characterization of pectin extracted from lemon pomace during ripening. J. Food. Nutrition. Sci. 2(2):30–35 (2014). http://www.sciencepublishinggroup.com/j/jfns

  7. Bagherian, H., Ashtiani, F.Z., Fouladitajar, A., Mohtashamy, M.: Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Processing: Process Intensification. 50(11–12), 1237–1243 (2011). https://doi.org/10.1016/j.cep.2011.08.002

    Article  Google Scholar 

  8. Bueno, A.S., Pereira, C.M., Menegassi, B., Arêas, J.A.G., Castro, I.A.: Effect of extrusion on the emulsifying properties of soybean proteins and pectin mixtures modelled by response surface methodology. J. Food Eng. 90(4), 504–510 (2009). https://doi.org/10.1016/j.jfoodeng.2008.07.028

    Article  Google Scholar 

  9. Bystrom, L.M., Lewis, B.A., Brown, D.L., Rodriguez, E., Obendorf, R.L.: Characterisation of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq‘Montgomery’fruits. Food. Chem. 111(4), 1017–1024 (2008). https://doi.org/10.1016/j.foodchem.2008.04.058

    Article  Google Scholar 

  10. Castillo-Israel, K.A.T., Amian, J.F.R., Garibay, Z.J.S., Leyeza, V.E.B., Sarte, A.J.T.: A comparative study on characteristics of pectins from various fruit peel wastes extracted using acid and microbial enzymes. J. Microbiol. Biotechnol. Food. Sci. 9(2), 216 (2019). https://doi.org/10.15414/jmbfs.2019.9.2.216-221

    Article  Google Scholar 

  11. Chan, S.Y., Choo, W.S., Young, D.J., Loh, X.J.: Pectin as a rheology modifier: Origin, structure, commercial productionand rheology. Carbohydr. Polym. 161, 118–139 (2017). https://doi.org/10.1016/j.carbpol.2016.12.033

    Article  Google Scholar 

  12. Chen, H., Liu, Y., Zhang, J., Jiang, Y., Li, D.: Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. Int. J. Biol. Macromol. 221, 976–985 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.069

    Article  Google Scholar 

  13. Daud, N.Z.A., Said, B.N.M., Ja’afar, F., Yasin, H.M., Kusrini, E., Usman, A.: pH - dependent yield and physicochemical properties of pectin isolated from Citrus maxima. Int. J. Technol. 10(6), 1131–1139 (2019). https://doi.org/10.14716/ijtech.v10i6.3595

    Article  Google Scholar 

  14. de Oliveira, C.F., Giordani, D., Lutckemier, R., Gurak, P.D., Cladera-Olivera, F., Marczak, L.D.F.: Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Sci. Technol. 71, 110–115 (2016). https://doi.org/10.1016/j.lwt.2016.03.027

    Article  Google Scholar 

  15. Devi, W. E., Kumar, R. S., Mishra, A. A.: Extraction of pectin from citrus fruit peel and its utilization in preparation of jelly.Int. J. Eng. Res. 3(5). 1925–1932. ISSN: 2278–0181 (2014)

  16. Dewanto, V., Wu, X., Adom, K.K., Liu, R.H.: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002). https://doi.org/10.1021/jf0115589

    Article  Google Scholar 

  17. do Nascimento, G.E., Simas-Tosin, F.F., Iacomini, M., Gorin, P.A.J., Cordeiro, L.M.: Rheological behavior of high methoxyl pectin from the pulp of tamarillo fruit (Solanum betaceum). Carbohydrate Polymers. 139, 125–130 (2016). https://doi.org/10.1016/j.carbpol.2015.11.067

    Article  Google Scholar 

  18. Filippov, M.P.: Practical infrared spectroscopy of pectic substances. Food Hydrocolloids 6(1), 115–142 (1992). https://doi.org/10.1016/S0268-005X(09)80060

    Article  Google Scholar 

  19. Fishman, M.L., Chau, H.K., Hoagland, P.D., Hotchkiss, A.T.: Microwave assisted extraction of lime pectin. Food Hydrocolloids. 20(8), 1170–1177 (2006). https://doi.org/10.1016/j.foodhyd.2006.01.002

    Article  Google Scholar 

  20. Gamonpilas, C., Buathongjan, C., Kirdsawasd, T., Rattanaprasert, M., Klomtun, M., Phonsatta, N., Methacanon, P.: Pomelo pectin and fiber: Some perspectives and applications in food industry. Food Hydrocolloids. 120:106981. (2021). https://doi.org/10.1016/j.foodhyd.2021.106981

  21. Gannasin, S.P., Adzahan, N.M., Hamzah, M.Y., Mustafa, S., Muhammad, K.: Physicochemical properties of tamarillo (Solanum betaceum Cav.) hydrocolloid fractions. Food Chem. 182, 292–301 (2015). https://doi.org/10.1016/j.foodchem.2015.03.010

    Article  Google Scholar 

  22. Gannasin, S.P., Ramakrishnan, Y., Adzahan, N.M., Muhammad, K.: Functional and preliminary characterisation of hydrocolloid from tamarillo (Solanum betaceum Cav) puree. Molecules. 17(6), 6869–6885 (2012). https://doi.org/10.3390/molecules17066869

    Article  Google Scholar 

  23. Garakani, A.K., Mostoufi, N., Sadeghi, F., Fatourechi, H., Sarrafzadeh, M., Mehrnia, M.: Comparison between different models for rheological characterization of activated sludge. J. Environ. Health. Sci Eng. 8(3), 255–264 (2011). https://doi.org/10.3390/molecules17066869

    Article  Google Scholar 

  24. Hosseini, S.S., Khodaiyan, F., Yarmand, M.S.: Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. Int. J. Biol. Macromol. 82, 920–926 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.007

    Article  Google Scholar 

  25. Huyskens-keil, S.H., Prono-widayat, P., Schreiner, Ludders M.: Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage. J. Food. Eng. 77(3), 628–634 (2006). https://doi.org/10.1016/j.jfoodeng.2005.07.028

    Article  Google Scholar 

  26. Iagher, F., Reicher, F., Ganter, J.L.M.S.: Structural and rheological properties of polysaccharides from mango (Mangifera indica L) pulp. Int. J. Biol. Macromol. 31(1–3), 9–17 (2002). https://doi.org/10.1016/S0141-8130(02)00044-2

    Article  Google Scholar 

  27. Joint FAO/WHO Expert Committee on Food Additives. Meeting (64th: 2005: Rome, Italy), Food and Agriculture Organization of the United Nations, World Health Organization & International Programme on Chemical Safety. (2006). Safety evaluation of certain contaminants in food: prepared by the sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization. https://apps.who.int/iris/handle/10665/43406

  28. Karbuz, P., Tugrul, N.: Microwave and ultrasound assisted extraction of pectin from various fruits peel. J. Food. Sci. Technol. 58(2), 641–650 (2021). https://doi.org/10.1007/s13197-020-04578-0

    Article  Google Scholar 

  29. Kavya, P., Sujatha, M., Pandravada, S.R., Hymavathi, T.V.: Determination of Protein and Carbohydrate Content and Its Correlation with Grain Yield in Foxtail Millet Germplasm. Int. J. Curr. Microbiol. App. Sci. 7(6), 363–367 (2018). https://doi.org/10.1093/aob/mcu150

    Article  Google Scholar 

  30. Kaya, M., Sousa, A.G., Crépeau, M.J., Sørensen, S.O., Ralet, M.C.: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann. Bot. 114(6), 1319–1326 (2014). https://doi.org/10.1093/aob/mcu150

    Article  Google Scholar 

  31. Kertesz, A. J.: The Pectin Substance. Inter science. New York, England. (1951). https://doi.org/10.1016/j.aaspro.2014.11.033

  32. Khamsucharit, P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K., Sangseethong, K.: Characterization of pectin extracted from banana peels of different varieties. Food. Sci. Biotechnol. 27(3), 623–629 (2018). https://doi.org/10.1007/s10068-017-0302-0

    Article  Google Scholar 

  33. Kliemann, E., De Simas, K.N., Amante, E.R., Prudêncio, E.S., Teófilo, R.F., Ferreira, M.M., Amboni, R.D.: Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. Int. J. Food Sci. Technol. 44(3), 476–483 (2009). https://doi.org/10.1111/j.1365-2621.2008.01753

    Article  Google Scholar 

  34. Lamani, S., Anu-Appaiah, K.A., Murthy, H.N., Dewir, Y.H., Rikisahedew, J.J.: Analysis of Free Sugars, Organic Acids, and Fatty Acids of Wood Apple (Limonia acidissima L) fruit Pulp. Horticulturae. 8, 67 (2022). https://doi.org/10.3390/horticulturae8010067

    Article  Google Scholar 

  35. Lewandowska, K., Dąbrowska, A., Kaczmarek, H.: Rheological properties of pectin, poly (vinyl alcohol) and their blends in aqueous solutions. E-Polymers. 12(1) (2012). https://doi.org/10.1515/epoly.2012.12.1.160

  36. Liew, S.Q., Chin, N.L., Yusof, Y.A.: Extraction and characterization of pectin from passion fruit peels. Agricul. Agricultural Sci. Procedia 2, 231–236 (2014). https://doi.org/10.1016/j.aaspro.2014.11.033

    Article  Google Scholar 

  37. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951). https://doi.org/10.1016/0003-2697(86)90191-0

    Article  Google Scholar 

  38. Mandal, P., Ghosal, M.: Antioxidant activities of different parts of tree tomato fruit. Int. J. Pharm. Sci. Rev. Res, 13, 39–47. ISSN 0976 – 044X (2012).

  39. McCann, M.C., Hammouri, M., Wilson, R., Belton, P., Roberts, K.: Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 100(4), 1940–1947 (1992). https://doi.org/10.1104/pp.100.4.1940

    Article  Google Scholar 

  40. Mendez, D.A., Fabra, M.J., Martínez-Abad, A., Μartínez-Sanz, Μ, Gorria, M., López-Rubio, A.: Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocolloids 120, 106957 (2021). https://doi.org/10.1016/j.foodhyd.2021.106957

    Article  Google Scholar 

  41. Min, B., Lim, J., Ko, S., Lee, K.G., Lee, S.H., Lee, S.: Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Biores. Technol. 102(4), 3855–3860 (2011). https://doi.org/10.1016/j.biortech.2010.12.019

    Article  Google Scholar 

  42. Moorthy, I.G., Maran, J.P., Ilakya, S., Anitha, S.L., Sabarima, S.P., Priya, B.: Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 34, 525–530 (2017)

    Article  Google Scholar 

  43. Mota, J., Muro, C., Illescas, J., Hernández, O.A., Tecante, A., Rivera, E.: Extraction and Characterization of Pectin from the Fruit Peel of Opuntia robusta. Chemistry Select 5(37), 11446–11452 (2020). https://doi.org/10.1002/slct.202002181

    Article  Google Scholar 

  44. Petkowicz, C.L.O., Vriesmann, L.C., Williams, P.A.: Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocolloids 65, 57–67 (2017). https://doi.org/10.1016/j.foodhyd.2016.10.040

    Article  Google Scholar 

  45. Ranganna, S.: Handbook of analysis and quality control for fruits and vegetable products. 7th Eds. Tata McGraw Hill Book Co., New Delhi. (2001)

  46. Rodsamran, P., Sothornvit, R.: Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem. 278, 364–372 (2019). https://doi.org/10.1016/j.foodchem.2018.11.067

    Article  Google Scholar 

  47. Seixas, F.L., Fukuda, D.L., Turbiani, F.R., Garcia, P.S., Carmen, L.D.O., Jagadevan, S., Gimenes, M.L.: Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocolloids 38, 186–192 (2014)

    Article  Google Scholar 

  48. Śmiechowska, M., Dmowski, P.: Crude fibre as a parameter in the quality evaluation of tea. Food Chem. 94(3), 366–368 (2006). https://doi.org/10.1016/j.foodchem.2004.11.026

    Article  Google Scholar 

  49. Umoren, S.A., Obot, I.B., Madhankumar, A., Gasem, Z.M.: Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: Experimental and theoretical approaches. Carbohyd. Polym. 124, 280–291 (2015). https://doi.org/10.1016/j.carbpol.2015.02.036

    Article  Google Scholar 

  50. Vanhanen, L., Savage, G.: Effect of simple processing methods on oxalate content of taro petioles and leaves grown in central Viet Nam. LWT-Food Sci. Technol. 50(1), 259–263 (2013). https://doi.org/10.1016/j.lwt.2012.05.015

    Article  Google Scholar 

  51. Vanitha, T., Khan, M.: Role of Pectin in Food Processing and Food Packaging. Pectins - Extraction, Purification, Characterization and App. (2019). https://doi.org/10.5772/intechopen.83677

    Article  Google Scholar 

  52. Vasco, C., Ruales, J., Kamal-Eldin, A.: Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 111, 816–823 (2008). https://doi.org/10.1016/j.foodchem.2008.04.054

    Article  Google Scholar 

  53. Vriesmann, L.C., Petkowicz, C.L.: Highly acetylated pectin from cacao pod husks (Theobroma cacao L.) forms gel. Food Hydrocolloids. 33(1), 58–65 (2013). https://doi.org/10.1016/j.foodhyd.2013.02.010

    Article  Google Scholar 

  54. Wongkaew, M., Sommano, S.R., Tangpao, T., Rachtanapun, P., Jantanasakulwong, K.: Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage. Foods 9(4), 450 (2020). https://doi.org/10.3390/foods9040450

    Article  Google Scholar 

  55. Xu, S.Y., Liu, J.P., Huang, X., Du, L.P., Shi, F.L., Dong, R., Cheong, K.L.: Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel. LWT- Food Sci. Technol. 90, 577–582 (2018). https://doi.org/10.1016/j.lwt.2018.01.007

    Article  Google Scholar 

  56. Yang, J.S., Mu, T.H., Ma, M.M.: Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 244, 197–205 (2018). https://doi.org/10.1016/j.foodchem.2017.10.059

    Article  Google Scholar 

  57. Yapo, B.M.: Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature. J. Agric. Food Chem. 57(4), 1572–1578 (2009). https://doi.org/10.1021/jf802969m

    Article  Google Scholar 

  58. Yapo, B.M.: Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Res. Int. 42(8), 1197–1202 (2009)

    Article  Google Scholar 

  59. Yapo, B.M., Koffi, K.L.: The polysaccharide composition of yellow passion fruit rind cell wall: chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. J. Sci. Food Agric. 88(12), 2125–2133 (2008). https://doi.org/10.1002/jsfa.3323

    Article  Google Scholar 

  60. Zimniewska, M., Rozańska, W., Gryszczynska, A., Romanowska, B., Kicinska-Jakubowska, A.: Antioxidant potential of hemp and flax fibers depending on their chemical composition. Molecules. 23(8), 1993 (2018). https://doi.org/10.3390/molecules23081993

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-CFTRI, Mysore for encouraging and providing research facilities.

Funding

This research work was funded by the Indian Council of Medical Research (ICMR Project No.3/1/2/108/2019-Nut), New Delhi.

Author A—Manjula N received the financial grant for fellowship, to carry out the research work.

Author B and (Author C, as research advisor for funding acquisition) declares they have no financial interest.

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Manjula N: Conceptualization, validation, investigation, formal analysis, writing. Kotha Hridhay Keerthana: Formal analysis, writing. Thiraviam Vanitha: Conceptualization, supervision, validation, funding acquisition.

Corresponding author

Correspondence to Thiraviam Vanitha.

Ethics declarations

Competing Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

Fruit wastes (pomace, peel, rind, and seed) are rich in polyphenols, pigments, oils, enzymes, fibers, vitamins, and other bioactive compounds. The processing of fruits generates 25% waste and produces up to 8–10% of the world’s greenhouse gas emissions. In this study, we have discussed the novel use of peel and pomace waste from passion (PE) and tamarillo (TT) fruit into the soluble dietary fiber, pectin (3–10%). Our findings revealed that extracted pectin contains protein (3–8%) that acts as a surfactant and enhances its functionality as an emulsifier and stabilizer. Further, the purified pectin can be used as functional ingredients for various dietary food and nutritional applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, N., Kotha, H.K. & Vanitha, T. Valorization of Passion and Tamarillo Fruit Waste for Extraction and Characterization of Pectin. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02529-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02529-w

Keywords

Navigation