Skip to main content

Advertisement

Log in

Potassium Permanganate-Based Ethylene Scavengers for Fresh Horticultural Produce as an Active Packaging

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Potassium permanganate (KMnO4) is a powerful ethylene (C2H4)-scavenging agent widely used in fresh horticultural commodities to delay the postharvest maturation. According to databases, it has been used for almost 50 years in food-packaging systems, and over 70 studies have evaluated its effects on fresh produce quality, mainly on climacteric fruit. However, the use of KMnO4-based technology remains limited at a commercial scale, since there are still lots of doubts on its potential as an effective postharvest tool, as well as in relation with health, environmental and safety concerns. Depending on the commodity, and even the variety, these scavengers may have different effects, but overall, they can delay ripening/senescence-related processes such as chlorophyll degradation/colour changes, weight and firmness losses, disorders and diseases, acidity and sugar changes. This review comprises an updated overview of the current knowledge regarding the use of KMnO4 as C2H4-scavenging agent, providing a concise appraisal on KMnO4-based C2H4 removal application and its effect on the quality of fresh produce. KMnO4 is commonly supported onto microporous mineral particles, which are placed into small sachets to avoid direct food contact within packages. Generally, KMnO4-based C2H4 scavengers are jointly used with modified atmosphere packaging. Hence, KMnO4-based C2H4-scavenging systems, as an active food-packaging technology, seem to be a relevant option to preserve the quality and safety of fresh horticultural produce. Nevertheless, although there are many KMnO4-based products available in the market, which are presently reviewed, more research is required in order to obtain an optimal C2H4-scavenger performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. AgraCo Technologies International LLC (2014) Frequently asked questions of our ethylene removal products. AgraCo Technologies International, LLC http://www.agraconew.com. Accessed 06 Jan 2019

  2. AgraCo Technologies International LLC (n.d.) Extend-a-life ethylene removal systems. All about ethylene and the solution for removal. http://www.pottersmix.com. Accessed 06 Jan 2019

  3. Akbari H, Ebrahimpour H (2014) Potassium permanganate and packing types impacts on postharvest quality and storage period of quince fruit (Cydonia oblonga Mill). Int J Adv Life Sci 7:267–275

    Google Scholar 

  4. Álvarez-Hernández M, Artés-Hernández F, Ávalos-Belmontes F, Castillo-Campohermoso M, Contreras-Esquivel J, Ventura-Sobrevilla J, Martínez-Hernández G (2018) Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life. Food Bioprocess Technol 11:511–525. https://doi.org/10.1007/s11947-018-2076-7

    Article  CAS  Google Scholar 

  5. Álvarez-Hernández M, Martínez-Hernández G, Avalos-Belmontes F, Rodríguez-Hernández A, Castillo-Campohermoso M, Artés-Hernández F (2019) An innovative ethylene scrubber made of potassium permanganate loaded on a protonated montmorillonite: a case study on blueberries. Food Bioprocess Technol 12:524–538. https://doi.org/10.1007/s11947-018-2224-0

    Article  CAS  Google Scholar 

  6. Amarante C, Steffens C (2009a) O tratamento pré-colheita com AVG, aliado à absorção do etileno durante o armazenamento refrigerado, preserva a qualidade de maçãs 'Gala'. Rev Bras Frutic 31:334–342. https://doi.org/10.1590/S0100-29452009000200007

    Article  Google Scholar 

  7. Amarante C, Steffens C (2009b) Sachês absorvedores de etileno na pós-colheita de maçãs 'Royal Gala'. Rev Bras Frutic 31:71–77. https://doi.org/10.1590/S0100-29452009000100011

    Article  Google Scholar 

  8. Araújo F, Silva T, Ramos P, Guimaraes A, Silva F, Finger F (2015) Longevity of Epidendrum ibaguense flowers affected by an ethylene absorber. Acta Hortic 1071:281–285. https://doi.org/10.17660/ActaHortic.2015.1071.35

    Article  Google Scholar 

  9. Argenta L, Vieira M, Scolaro A (2009) Conservação da qualidade de caqui 'Fuyu' em ambiente refrigerado pela combinação de 1-MCP e atmosfera modificada. Rev Bras Frutic 31:323–333. https://doi.org/10.1590/S0100-29452009000200006

    Article  Google Scholar 

  10. Artés F, Gómez P, Aguayo E, Escalona V, Artés-Hernández F (2009) Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol Technol 51:287–296. https://doi.org/10.1016/j.postharvbio.2008.10.003

    Article  CAS  Google Scholar 

  11. ASTM (2014) ASTM D6646-03 (2014), standard test method for determination of the accelerated hydrogen sulfide breakthrough capacity of granular and pelletized activated carbon. ASTM International, West Conshohocken. https://doi.org/10.1520/D6646-03R14

    Book  Google Scholar 

  12. Bal E, Celik S (2010) The effects of postharvest treatments of salicylic acid and potassium permanganate on the storage of kiwifruit. Bulgarian J Agric Sci 16:576–584

    Google Scholar 

  13. Basuki E, Prarudiyanto A (2017) Inactivation of ACC oxidase (Acco) during modified atmosphere storage (MAS) of mango. Int J Sci Technol Res 6:167–172

    Google Scholar 

  14. Befresh Technology (2018a) ¿Qué es BEfresh? Befresh Technology, S.L. http://www.befreshtech.com. Accessed 06 Jan 2019

  15. Befresh Technology (2018b) Soluciones para la purificación del aire. Befresh Technology, S.L. http://www.befreshtech.com. Accessed 06 Jan 2019

  16. Berezkin K, Fomchenko A, Aslapovskaya Y, Gromova O, Bekhtereva E, Maul K (2017) High-resolution spectroscopy of the CH2 = CD2 molecule: analysis of the hot ν7 + ν10 – ν10 band. Russ Phys J 60:557–561. https://doi.org/10.1007/s11182-017-1108-5

    Article  CAS  Google Scholar 

  17. Bhattacharjee D, Dhua R (2017a) Ethylene absorbents improve the shelf life of pointed gourd (Trichosanthes dioica Roxb.) fruits. Int J Pure Appl Biosci 5:64–71. https://doi.org/10.18782/2320-7051.2450

    Article  Google Scholar 

  18. Bhattacharjee D, Dhua R (2017b) Influence of ethylene absorbents on shelf life of bitter gourd (Momordica charantia L.) fruits during storage. Int J Curr Microbiol App Sci 6:1553–1563. https://doi.org/10.20546/ijcmas.2017.605.169

    Article  CAS  Google Scholar 

  19. Bhutia W, Pal R, Sen S, Jha S (2011) Response of different maturity stages of sapota (Manilkara achras Mill.) cv. Kallipatti to in-package ethylene absorbent. J Food Sci Technol 48:763–768. https://doi.org/10.1007/s13197-011-0360-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bioconservacion (2015a) Bi-On® R8 technical datasheet. http://www.subsoleservicios.cl. Accessed 06 Jan 2019

  21. Bioconservacion (2015b) Bi-On® R12 technical datasheet. http://www.subsoleservicios.cl. Accessed 06 Jan 2019

  22. Biopac (n.d.) Ethylene control. BIOPAC Pty ltd. http://www.biopac.com.au. Accessed 06 Jan 2019

  23. BIOXTEND (2012) BioX® granule. BioXTEND Co. http://www.bioxtend.com. Accessed 06 Jan 2019

  24. Blanke M (2014) Reducing ethylene levels along the food supply chain: a key to reducing food waste? J Sci Food Agric 94:2357–2361. https://doi.org/10.1002/jsfa.6660

    Article  CAS  PubMed  Google Scholar 

  25. Bodbodak S, Rafiee Z (2016) Recent trends in active packaging in fruits and vegetables. In: Siddiqui MW (ed) Eco-friendly technology for postharvest produce quality. Academic, London, pp 77–125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7

    Chapter  Google Scholar 

  26. Bouzo C, Travadelo M, Gariglio N (2012) Effect of different packaging materials on postharvest quality of fresh fig fruit. Int J Agric Biol 14:821–825

    CAS  Google Scholar 

  27. Brackmann A, Saquet A (1999) Low ethylene and rapid CA storage of ‘Gala’ apples. Acta Hortic (485):79–84. https://doi.org/10.17660/ActaHortic.1999.485.9

  28. Brackmann A, Trevisan J, Martins G, Freitas S, Mello A (2005) Qualidade pós-colheita de couve-flor ‘Teresópolis gigante' tratada com etileno, absorvedor de etileno e 1-metilciclopropeno. Ciênc Rural 35:1444–1447. https://doi.org/10.1590/S0103-84782005000600035

    Article  CAS  Google Scholar 

  29. Brackmann A, Hettwer R, Tonetto S, Eisermann A, Machado A (2006) Uso de filmes de polietileno e absorção de etileno para o transporte refrigerado de maçã ‘Gala’. Semina: Ciências Agrárias 27:423–428

    CAS  Google Scholar 

  30. Brackmann A, Thewes F, Anese R, Both V (2014) Effect of growth regulators on ‘Brookfield’ apple gas diffusion and metabolism under controlled atmosphere storage. Pesq Agrop Brasileira 49:323–329. https://doi.org/10.1590/S0100-204X2014000500001

    Article  Google Scholar 

  31. Brackmann A, Thewes F, Santos L, Machado E, Ludwig V, Artmann L (2015) Effect of growth regulators application on the quality maintenance of ‘Brookfield’ apples. Bragantia 74:453–456. https://doi.org/10.1590/1678-4499.0050

    Article  Google Scholar 

  32. Brody A, Strupinsky E, Kline L (2001) Ethylene control. In: Brody A, Strupinsky E, Kline L (eds) Active packaging for food applications. CRC, Boca Raton

    Chapter  Google Scholar 

  33. Bry-Air (Asia) Pvt. Ltd (2017) Granular media BRYSORBTM series for gas phase filtration systems product brochures. Bry-Air (Asia) Pvt. Ltd. https://bryair.com. Accessed 06 Jan 2019

  34. Buzby JC, Farah-Wells H, Hyman J (2014) The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. USDA-ERS Economic Information Bulletin Number 121 https://doi.org/10.2139/ssrn.2501659

  35. Campos J, Hasegawa P, Purgatto E, Lajolo F, Cordenunsi B (2007) Qualidade pós-colheita de nêsperas submetidas ao armazenamento sob baixa temperatura e atmosfera modificada. Food Sci Technol 27:401–407. https://doi.org/10.1590/S0101-20612007000200033

    Article  Google Scholar 

  36. Castro J, Pfaffenbach L, Carvalho C, Rossetto C (2005) Effects of film packaging and cold storage on postharvest quality of ‘Tommy Atkins’ mangoes. Acta Hortic 682:1683–1688. https://doi.org/10.17660/ActaHortic.2005.682.224

    Article  Google Scholar 

  37. Castro J, Conte R, Carvalho C, Rossetto C (2010) Effects of postharvest treatments and film packaging on quality of ‘Haden 2H’ mangoes. Acta Hortic 864:295–298. https://doi.org/10.17660/ActaHortic.2010.864.39

    Article  CAS  Google Scholar 

  38. Cevik S, Yesil O, Ozturk T, Guneysel O (2012) Potassium permanganate ingestion as a suicide attempt. Clin Pract 2:e32–e32. https://doi.org/10.4081/cp.2012.e32

    Article  PubMed  PubMed Central  Google Scholar 

  39. CFR (2018a) Adhesives, 21 CFR §175.105 2018. Electronic Code of Federal Regulations e-CFR. https://www.ecfr.gov

  40. CFR (2018b) Ethylene polymer, chlorosulfonated, 21 CFR §177.2210 2018. Electronic Code of Federal Regulations e-CFR. https://www.ecfr.gov

  41. CFR (2018c) Olefin polymers, 21 CFR §177.1520 2018. Electronic Code of Federal Regulations e-CFR. https://www.ecfr.gov

  42. Chamara D, Illeperuma K, Galappatty T, Sarananda K (2000) Modified atmosphere packaging of ‘Kolikuttu’ bananas at low temperature. J Hortic Sci Biotechnol 75:92–96. https://doi.org/10.1080/14620316.2000.11511206

    Article  Google Scholar 

  43. Chauhan O, Raju P, Dasgupta D, Bawa A (2006) Modified atmosphere packaging of banana (cv. Pachbale) with ethylene, carbon dioxide and moisture scrubbers and effect on its ripening behaviour. Am J Food Technol 1:179–189. https://doi.org/10.3923/ajft.2006.179.189

    Article  CAS  Google Scholar 

  44. Chaves M et al (2007) Use of potassium permanganate in the sugar apple post-harvest preservation. Cienc Tecnol Aliment 5:346–351. https://doi.org/10.1080/11358120709487711

    Article  CAS  Google Scholar 

  45. Chopra S, Dhumal S, Abeli P, Beaudry R, Almenar E (2017) Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging. Postharvest Biol Technol 130:48–55. https://doi.org/10.1016/j.postharvbio.2017.04.001

    Article  CAS  Google Scholar 

  46. Climent M (2015) El filtro que conserva las frutas y verduras frescas más tiempo. Unidad Editorial Información General S.L.U., El Mundo http://www.elmundo.es. Accessed 06 Jan 2019

    Google Scholar 

  47. Corrêa S et al (2005) Effect of the potassium permanganate during papaya fruit ripening: ethylene production. J Phys IV France 125:869–871. https://doi.org/10.1051/jp4:2005125201

    Article  CAS  Google Scholar 

  48. Corrêa P, Resende O, Menezes D (2010) Ethylene absorption analysis in the modified atmosphere composition during the ‘Hass’ avocado conservation under different temperatures. Acta Hortic 864:317–322. https://doi.org/10.17660/ActaHortic.2010.864.42

    Article  Google Scholar 

  49. Cortellino G, Gobbi S, Bianchi G, Rizzolo A (2015) Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends Food Sci Technol 46:320–330. https://doi.org/10.1016/j.tifs.2015.06.002

    Article  CAS  Google Scholar 

  50. Dainelli D, Gontard N, Spyropoulos D, Zondervan-van E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112. https://doi.org/10.1016/j.tifs.2008.09.011

    Article  CAS  Google Scholar 

  51. Dash S, Patel S, Mishra B (2009) Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron 65:707–739. https://doi.org/10.1016/j.tet.2008.10.038

    Article  CAS  Google Scholar 

  52. de Chiara M, Pal S, Licciulli A, Amodio M, Colelli G (2015) Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: effects on the ripening of mature green tomatoes. Biosyst Eng 132:61–70. https://doi.org/10.1016/j.biosystemseng.2015.02.008

    Article  Google Scholar 

  53. de Souza W, Bezerra M, Dantas P, da Curnha A, Sales R (2017) Potassium permanganate effects on the quality and post-harvest conservation of sapodilla ( Manilkara zapota (L.) P.Royen) fruits under modified atmosphere. Acta Agron 66:331–337. https://doi.org/10.15446/acag.v66n3.54579

    Article  Google Scholar 

  54. DeEll J, Toivonen P, Cornut F, Roger C, Vigneault C (2006) Addition of sorbitol with KMnO4 improves broccoli quality retention in modified atmosphere packages. J Food Qual 29:65–75. https://doi.org/10.1111/j.1745-4557.2006.00056.x

    Article  CAS  Google Scholar 

  55. DeltaTrak Inc (2018) Air repair ethylene absorbers, 2018. DeltaTrak Inc. https://www.deltatrak.com. Accessed 06 Jan 2019

  56. Dodd M, Bouwer J (2014) The supply value chain of fresh produce from field to home: refrigeration and other supporting technologies. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (eds) Postharvest handling, 3rd edn. Academic, San Diego, pp 449–483. https://doi.org/10.1016/B978-0-12-408137-6.00016-8

    Chapter  Google Scholar 

  57. DuPont (2019) Tyvek® for food active packaging. DuPont. http://www.dupont.com. Accessed 12 May 2019

  58. El-Anany A, Hassan G (2013) Impact of activated carbon from date pits, potassium permanganate and their combination on extending the postharvest quality of three maturity stages of guava during cold storage. Int J Postharvest Technol Innov 3:403–425. https://doi.org/10.1504/IJPTI.2013.060272

    Article  Google Scholar 

  59. Emadpour M, Ghareyazie B, Rezai K, Omrani A, Mohammadi G (2009) Effect of potassium permanganate-coated nano-zeolites on cherry quality and shelf life. J Agric Eng Res 10:11–26

    Google Scholar 

  60. EPA (2018) Active ingredient listing. Office of Pesticide Programs. United States Environmental Protection Agency. https://ofmpub.epa.gov. Accessed 21 Nov 2018

  61. EPA (n.d.) Permanganate. Drinking Water Treatability Database. United States of Environmental Protection Agency. https://iaspub.epa.gov. Accessed 21 Nov 2018

  62. Ethylene Control Inc. (2015) Safety datasheet. Technical data sheet supplied by the manufacturer company

  63. European Commission (2009) Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. OJ L 135, 30.5.2009. Official Journal of the European Union, Strasbourg

  64. European Parliament and Council of the European Union (2004) Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. OJ L 338, 13.11.2004

  65. Ezz T, Awad R (2011) Effect of some post harvest treatments under different low temperature on two mango cultivars. Aust J Basic Appl Sci 5:1164–1174

    CAS  Google Scholar 

  66. Flink (n.d.) Filtro Easyfit technical datasheet. Flink. http://flink.pe. Accessed 06 Jan 2019

  67. Forsyth F, Eaves C, Lockhart C (1967) Controlling ethylene levels in the atmosphere of small containers of apples. Can J Plant Sci 47:717–718. https://doi.org/10.4141/cjps67-126

    Article  CAS  Google Scholar 

  68. Gaikwad K, Lee Y (2017) Current scenario of gas scavenging systems used in active packaging—a review. Korean J Pack Sci Technol 23:109–117. https://doi.org/10.20909/kopast.2017.23.2.109

    Article  Google Scholar 

  69. García J, Balaguera-López H, Herrera A (2013) Conservación del fruto de banano bocadillo (Musa AA Simmonds) con la aplicación de permanganato de potasio (KMnO4). Rev Colomb Cienc Hortíc 6:161–171. https://doi.org/10.17584/rcch.2012v6i2.1974

    Article  Google Scholar 

  70. Giraldo E, Szczerbanik M, Scottpez K, Paton J, Best D (2005) Effects of polyethylene bags, ethylene absorbent and 1-methylcyclopropene on the storage of Japanese pears. J Hortic Sci Biotechnol 80:162–166. https://doi.org/10.1080/14620316.2005.11511910

    Article  Google Scholar 

  71. GreenKeeper (n.d.) Tipos de granulados. GREENKEEPER IBERIA, S.L. http://greenkeeperiberia.es. Accessed 06 Jan 2019

  72. GreenKeeper Iberia SL (n.d.) Gama de granulado GK de Alta capacidad. Technical data sheet supplied by the manufacturer company. Madrid

  73. Guan X, He D, Ma J, Chen G (2010) Application of permanganate in the oxidation of micropollutants: a mini review. Front Environ Sci Eng China 4:405–413. https://doi.org/10.1007/s11783-010-0252-8

    Article  CAS  Google Scholar 

  74. Gudenschwager O, Defilippi B (2016) Fresh fruit aroma: an integrative overview for a complex flavor trait. In: Pareek S (ed) Postharvest ripening physiology of crops. CRC, Boca Raton, pp 513–552

    Google Scholar 

  75. Guo P, Fu Y, Liu X, Li D, Xu W (2018) Research and application progress on food active MAP packaging. In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y (eds) Applied sciences in graphic communication and packaging, vol 477. Lecture Notes in Electrical Engineering. Springer, Singapore, pp 495–501. https://doi.org/10.1007/978-981-10-7629-9_61

    Chapter  Google Scholar 

  76. Illeperuma C, Jayasuriya P (2002) Prolonged storage of ‘Karuthacolomban’ mango by modified atmosphere packaging at low temperature. J Hortic Sci Biotechnol 77:153–157. https://doi.org/10.1080/14620316.2002.11511472

    Article  Google Scholar 

  77. Illeperuma C, Nikapitiya C (2002) Extension of the postharvest life of ‘Pollock’ avocado using modified atmosphere packaging. Fruits 57:287–295. https://doi.org/10.1051/fruits:2002025

    Article  Google Scholar 

  78. ILO (2015) 0672_Potassium permanganate. ICSC database. International Chemical Safety Cards (ICSCs). https://www.ilo.org. Accessed 11 May 2019

  79. IPCS (1981) Manganese. Environmental health criteria 17. World Health Organization http://www.inchem.org/

  80. IPCS (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization & International Programme on Chemical Safety. World Health Organization. http://www.who.int

  81. Ishaq S, Ahmed H, Masud T, Ali S (2009) Influence of post harvest calcium chloride application, ethylene absorbent and modified atmosphere on quality characteristics and shelf life of apricot (Prunus armeniaca L.) fruit during storage. Pak J Nutr 8:861–865. https://doi.org/10.3923/pjn.2009.861.865

    Article  CAS  Google Scholar 

  82. ISOLCELL S.p.A (n.d.) PURETHYL. Assorbitore Purethyl. ISOLCELL S.p.A. https://storage.isolcell.com. Accessed 06 Jan 2019

  83. Janjarasskul T, Suppakul P (2018) Active and intelligent packaging: the indication of quality and safety. Crit Rev Food Sci Nutr 58:808–831. https://doi.org/10.1080/10408398.2016.1225278

    Article  PubMed  Google Scholar 

  84. Jeronimo E, Brunini M, Arruda M, Cruz J, Gava G, Silva M (2007) Qualidade de mangas ‘Tommy Atkins’ armazenadas sob atmosfera modificada. Ciênc Agrotecnol 31:1122–1130. https://doi.org/10.1590/S1413-70542007000400027

    Article  CAS  Google Scholar 

  85. Kader A (2002) Postharvest technology of horticultural crops, 3rd edn. UCANR Publications, Richmond

    Google Scholar 

  86. Kader A (2013) Postharvest technology of horticultural crops—an overview from farm to fork. Ethiop J Appl Sci Technol:1–8

  87. Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS (2018) Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol 112:523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

    Article  CAS  PubMed  Google Scholar 

  88. KEEPCOOL (2018a) Filtros de etileno. KEEPCOOL. http://keep-cool.es. Accessed 06 Jan 2019

  89. KEEPCOOL (2018b) Filtros KEEPCOOL KF para almacenamiento refrigerado. KEEPCOOL. http://keep-cool.es. Accessed 06 Jan 2019

  90. KEEPFRESH (2018) Products. BLUE TECK SYSTEMS, S.L. https://www.keepfresh.eu. Accessed 06 Jan 2019

  91. Keller N, Ducamp M-N, Robert D, Keller V (2013) Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem Rev 113:5029–5070. https://doi.org/10.1021/cr900398v

    Article  CAS  PubMed  Google Scholar 

  92. Ketsa S, Imsabai W, van Doorn W (2005) Effect of precooling and ethylene absorbent on the quality of dendrobium ‘Pompadour’ flowers. Acta Hortic 669:367–372. https://doi.org/10.17660/ActaHortic.2005.669.48

    Article  CAS  Google Scholar 

  93. Kim G-H, Wills R (1995) Effect of ethylene on storage life of lettuce. J Sci Food Agric 69:197–201. https://doi.org/10.1002/jsfa.2740690209

    Article  CAS  Google Scholar 

  94. Kim G-H, Wills R (1998) Interaction of enhanced carbon dioxide and reduced ethylene on the storage life of strawberries. J Hortic Sci Biotechnol 73:181–184. https://doi.org/10.1080/14620316.1998.11510962

    Article  CAS  Google Scholar 

  95. Knee M, Hatfield S (1981) Benefits of ethylene removal during apple storage. Ann Appl Biol 98:157–165. https://doi.org/10.1111/j.1744-7348.1981.tb00433.x

    Article  CAS  Google Scholar 

  96. Köstekli M, Özdzikicierlev O, Cortés C, Zulueta A, Esteve M, Frígola A (2016) Role of potassium permanganate ethylene on physicochemical properties, during storage of five different tomato cultivars. MOJ Food Process Technol 3:281–289. https://doi.org/10.15406/mojfpt.2016.03.00069

    Article  Google Scholar 

  97. Kruijf N, Beest M, Rijk R, Sipiläinen-Malm T, Losada P, Meulenaer B (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19:144–162. https://doi.org/10.1080/02652030110072722

    Article  CAS  Google Scholar 

  98. Ku V, Shohet D, Wills R, Kim G (1999) Importance of low ethylene levels to delay senescence of non-climacteric fruit and vegetables. Aust J Exp Agric 39:221–224. https://doi.org/10.1071/EA98123

    Article  Google Scholar 

  99. Kyriacou M, Rouphael Y (2018) Towards a new definition of quality for fresh fruits and vegetables. Sci Hortic 234:463–469. https://doi.org/10.1016/j.scienta.2017.09.046

    Article  Google Scholar 

  100. Lebersorger S, Schneider F (2014) Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures. Waste Manag 34:1911–1919. https://doi.org/10.1016/j.wasman.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  101. Lee SY, Lee SJ, Choi DS, Hur SJ (2015) Current topics in active and intelligent food packaging for preservation of fresh foods. J Sci Food Agric 95:2799–2810. https://doi.org/10.1002/jsfa.7218

    Article  CAS  PubMed  Google Scholar 

  102. Li L, Lichter A, Chalupowicz D, Gamrasni D, Goldberg T, Nerya O, Ben-Arie R, Porat R (2016) Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biol Technol 111:322–329. https://doi.org/10.1016/j.postharvbio.2015.09.031

    Article  CAS  Google Scholar 

  103. Lidster P, Lawrence R, Blanpied G, McRae K (1985) Laboratory evaluation of potassium permanganate for ethylene removal from CA apple storages. Trans ASAE 28:331–0334. https://doi.org/10.13031/2013.32252

    Article  CAS  Google Scholar 

  104. Liu M, Chervin C (2017) Ethylene and fruit ripening. In: Reference module in food science. Elsevier, pp 1–9. https://doi.org/10.1016/B978-0-08-100596-5.21256-0

  105. López-Gómez A, Fernández P, Palop A, Periago P, Martinez-López A, Marin-Iniesta F, Barbosa-Cánovas G (2009) Food safety engineering: an emergent perspective. Food Eng Rev 1:84–104. https://doi.org/10.1007/s12393-009-9005-5

    Article  CAS  Google Scholar 

  106. Mahajan P, Caleb O, Singh Z, Watkins C, Geyer M (2014) Postharvest treatments of fresh produce. Philos Trans R Soc A Math Phys Eng Sci 372:20130309. https://doi.org/10.1098/rsta.2013.0309

    Article  CAS  Google Scholar 

  107. Manalili N, Dorado M, van Otterdijk R (2014) Appropriate food packaging solutions for developing countries. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  108. Mangaraj S, Goswami T, Mahajan P (2009) Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng Rev 1:133–158. https://doi.org/10.1007/s12393-009-9007-3

    Article  CAS  Google Scholar 

  109. Mansourbahmani S, Ghareyazie B, Zarinnia V (2018) Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. J Food Meas Charact 12:691–701. https://doi.org/10.1007/s11694-017-9682-3

    Article  Google Scholar 

  110. Martínez-Romero D, Bailén G, Serrano M, Guillén F, Valverde JM, Zapata P, Castillo S, Valero D (2007) Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review. Crit Rev Food Sci Nutr 47:543–560. https://doi.org/10.1080/10408390600846390

    Article  CAS  PubMed  Google Scholar 

  111. Miatech Inc. (2019) Erisfilter. Miatech, Inc. https://eris-filter.com. Accessed 06 Jan 2019

  112. Molecular Products_Limited (2009) Ethysorb®. Molecular Products Limited. http://www.molecularproducts.com. Accessed 06 Jan 2019

  113. Mortazavi S, Karami Z, Mostaan A (2015) Use of ethylene scavenger sachet in modified atmosphere packaging to maintain storage stability of khalal date fruit. Int J Postharvest Technol Innov 5:52–63. https://doi.org/10.1504/IJPTI.2015.072447

    Article  Google Scholar 

  114. Mujtaba A, Masud T, Butt S, Qazalbash M, Fareed W, Shahid A (2014) Potential role of calcium chloride, potassium permanganate and boric acid on quality maintenance of tomato cv. Rio grandi at ambient temperature. Int J Biosci 5:9–20. https://doi.org/10.12692/ijb/5.9.9-20

    Article  CAS  Google Scholar 

  115. Murmu SB, Mishra HN (2018) Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low-temperature storage. Food Chem 253:55–62. https://doi.org/10.1016/j.foodchem.2018.01.134

    Article  CAS  PubMed  Google Scholar 

  116. Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44:185–193. https://doi.org/10.1080/10408690490441578

    Article  CAS  PubMed  Google Scholar 

  117. Palou L, Crisosto C (2003) Postharvest treatments to reduce the harmful effects of ethylene on apricots. Acta Hortic (599):31–38. https://doi.org/10.17660/ActaHortic.2003.599.1

  118. Paul V, Pandey R, Srivastava G (2012) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—an overview. J Food Sci Technol 49:1–21. https://doi.org/10.1007/s13197-011-0293-4

    Article  CAS  PubMed  Google Scholar 

  119. Pech JC, Purgatto E, Bouzayen M, Latché A (2012) Ethylene and fruit ripening. In: McManus MT (ed) Annual plant reviews volume 44. Wiley-Blackwell, West Sussex, pp 275–304. https://doi.org/10.1002/9781118223086.ch11

    Chapter  Google Scholar 

  120. Pereira D, Cruz J, Paseiro P (2012) Active and intelligent packaging for the food industry. Food Rev Int 28:146–187. https://doi.org/10.1080/87559129.2011.595022

    Article  CAS  Google Scholar 

  121. Prill M, Neves LC, Tosin JM, Chagas EA (2012) Atmosfera modificada e controle de etileno para bananas 'Prata-Anã' cultivadas na Amazônia Setentrional Brasileira. Rev Bras Frutic 34:990–1003. https://doi.org/10.1590/S0100-29452012000400005

    Article  Google Scholar 

  122. Prodew (2012) Maintaining freshness from harvest to retail. Prodew. http://www.prodew.com. Accessed 06 Jan 2019

  123. Prodew (2018) Ethylene control. Prodew. http://www.prodew.com. Accessed 06 Jan 2019

  124. Purafil Inc. (2015) Product bulletin for purafil select media. Purafil, Inc https://www.purafil.com. Accessed 06 Jan 2019

  125. Purafil Inc. (2019) Select. Purafil, Inc. https://www.purafil.com. Accessed 06 Jan 2019

  126. Ramin A, Rezaei A, Shams M (2010) Potassium permanganates and short term hypobaric enhances shelf-life of kiwifruits. Acta Hortic (877):849–852. https://doi.org/10.17660/ActaHortic.2010.877.113

  127. Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435. https://doi.org/10.1016/j.foodcont.2010.04.028

    Article  Google Scholar 

  128. RETARDER SRL (n.d.) Conservazione. Assorbitori di Etilene. RETARDER SRL. http://www.retarder.it. Accessed 06 Jan 2019

  129. Rouphael Y, Kyriacou MC (2018) Quality and safety of fresh fruits and vegetables at harvest. Sci Hortic 239:78–79. https://doi.org/10.1016/j.scienta.2018.05.006

    Article  Google Scholar 

  130. Sá C, Oliveira E, Terao D, Hansen A (2008) Efeito do KMnO4 e 1-MCP com atmosfera modificada na conservação pós-colheita de melão. Cantaloupe Revista Ciência Agronômica 39:60–69

    Google Scholar 

  131. Sabater-Vilar M, Suñé-Colell E, Castro-Chinchilla J, Sáenz-Murillo M (2018) Reduction of postharvest rotting with an ethylene absorbent: a case study with pineapple. Acta Hortic 1194:721–728. https://doi.org/10.17660/ActaHortic.2018.1194.103

    Article  Google Scholar 

  132. Salamanca F, Balaguera-López H, Herrera A (2014) Effect of potassium permanganate on some postharvest characteristics of tomato ‘Chonto’ fruits (Solanum lycopersicum L.). Acta Hortic 1016:171–176. https://doi.org/10.17660/ActaHortic.2014.1016.24

    Article  Google Scholar 

  133. Saltveit ME (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15:279–292. https://doi.org/10.1016/S0925-5214(98)00091-X

    Article  CAS  Google Scholar 

  134. Sandhya (2010) Modified atmosphere packaging of fresh produce: current status and future needs. LWT Food Sci Technol 43:381–392. https://doi.org/10.1016/j.lwt.2009.05.018

    Article  CAS  Google Scholar 

  135. Santos A, Rosas J (2016) In situ chemical oxidation (ISCO). In: Albergaria J, Nouws H (eds) Soil remediation: applications and new technologies, 1st edn. CRC, Boca Raton

    Google Scholar 

  136. Santosa E, Widodo WD, Kholidi (2010) The use of clay as potassium permanganate carrier to delay the ripening of Raja Bulu banana. Jurnal Hortikultura Indonesia 1:88–95. https://doi.org/10.29244/jhi.1.2.88-95

    Article  Google Scholar 

  137. Sardabi F, Mohtadinia J, Shavakhi F, Jafari AA (2014) The effects of 1-methylcyclopropen (1-MCP) and potassium permanganate coated zeolite nanoparticles on shelf life extension and quality loss of golden delicious apples. J Food Process Preserv 38:2176–2182. https://doi.org/10.1111/jfpp.12197

    Article  CAS  Google Scholar 

  138. Scott K, Wills R (1974) Reduction of brown heart in pears by absorption of ethylene from the storage atmosphere. Aust J Exp Agric 14:266–268. https://doi.org/10.1071/EA9740266

    Article  CAS  Google Scholar 

  139. Scott K, McGlasson W, Roberts E (1970) Potassium permanganate as an ethylene absorbent in polyethylene bags to delay ripening of bananas during storage. Aust J Exp Agric 10:237–240. https://doi.org/10.1071/EA9700237

    Article  CAS  Google Scholar 

  140. Sensitech Inc. (2013) Ryan® ethylene absorption products from sensitech. Sensitech Inc. https://files.sensitech.com. Accessed 06 Jan 2019

  141. Shaabani A, Rahmati A, Sharifi M, Rad J, Aghaaliakbari B, Farhangi E, Lee D (2007) Green oxidations. Manganese(II) sulfate aided oxidations of organic compounds by potassium permanganate. Monatsh Chem Chem Month 138:649–651. https://doi.org/10.1007/s00706-007-0667-5

    Article  CAS  Google Scholar 

  142. Sharma R, Ghoshal G (2018) Emerging trends in food packaging. Nutr Food Sci 48:764–779. https://doi.org/10.1108/NFS-02-2018-0051

    Article  Google Scholar 

  143. Shorter A, Scott K, Ward G, Best D (1992) Effect of ethylene absorption on the storage of Granny Smith apples held in polyethylene bags. Postharvest Biol Technol 1:189–194. https://doi.org/10.1016/0925-5214(92)90001-6

    Article  CAS  Google Scholar 

  144. Silva D, Salomão L, Siqueira D, Cecon P, Rocha A (2009) Potassium permanganate effects in postharvest conservation of the papaya cultivar Sunrise Golden. Pesq Agrop Brasileira 44:669–675. https://doi.org/10.1590/S0100-204X2009000700003

    Article  Google Scholar 

  145. Silva F, Ribeiro W, França C, Araújo F, Finger F (2015) Action of potassium permanganate on the shelf-life of Cucumis anguria fruit. Acta Hortic 1071:105–111. https://doi.org/10.17660/ActaHortic.2015.1071.9

    Article  Google Scholar 

  146. Singh R, Giri S (2014) Shelf-life study of guava (Psidium guajava L.) under active packaging: an experiment with potassium permanganate salt as ethylene absorbent. J Food Saf Food Qual 65:32–39. https://doi.org/10.2376/0003-925X-65-32

    Article  CAS  Google Scholar 

  147. Singh N, Lee D (2001) Permanganate: a green and versatile industrial oxidant. Org Process Res Dev 5:599–603. https://doi.org/10.1021/op010015x

    Article  CAS  Google Scholar 

  148. Slavin JL, Lloyd B (2012) Health benefits of fruits and vegetables. Adv Nutr 3:506–516. https://doi.org/10.3945/an.112.002154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sousa-Gallagher M, Tank A, Sousa R (2016) Emerging technologies to extend the shelf life and stability of fruits and vegetables. In: Subramaniam P (ed) The stability and shelf life of food, 2nd edn. Woodhead Publishing, Duxford, pp 399–430. https://doi.org/10.1016/B978-0-08-100435-7.00014-9

    Chapter  Google Scholar 

  150. Spricigo P, Foschini M, Ribeiro C, Corrêa D, Ferreira M (2017) Nanoscaled platforms based on SiO2 and Al2O3 impregnated with potassium permanganate use color changes to indicate ethylene removal. Food Bioprocess Technol 10:1622–1630. https://doi.org/10.1007/s11947-017-1929-9

    Article  CAS  Google Scholar 

  151. Suvanjinda P, Kangkhamanee S, Surawoot A, Suphatthra L, Chootummatat S, Charoensang U (2014) The development of technology to increase production efficiency for good quality longkong in the lower southern area. Acta Hortic 1024:133–140. https://doi.org/10.17660/ActaHortic.2014.1024.14

    Article  Google Scholar 

  152. Taboada-Rodríguez A, García-García I, Cava-Roda R, López-Gómez A, Marín-Iniesta F (2013) Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers. J Coat Technol Res 10:749–755. https://doi.org/10.1007/s11998-013-9493-3

    Article  CAS  Google Scholar 

  153. Terry L, Ilkenhans T, Poulston S, Rowsell L, Smith A (2007) Development of new palladium-promoted ethylene scavenger. Postharvest Biol Technol 45:214–220. https://doi.org/10.1016/j.postharvbio.2006.11.020

    Article  CAS  Google Scholar 

  154. Tirgar A, Han D, Steckl AJ (2018) Absorption of ethylene on membranes containing potassium permanganate loaded into alumina-nanoparticle-incorporated alumina/carbon nanofibers. J Agric Food Chem 66:5635–5643. https://doi.org/10.1021/acs.jafc.7b05037

    Article  CAS  PubMed  Google Scholar 

  155. Tourky M, Tarabih M, El-Eryan E (2014) Physiological studies on the marketability of Williams banana fruits. Am J Plant Physiol 9:1–15. https://doi.org/10.3923/ajpp.2014.1.15

    Article  CAS  Google Scholar 

  156. UNECE UNECfE (2009) Globally harmonized system of classification and labelling of chemicals (GHS), 3rd edn. United Nations, New York and Geneva

    Google Scholar 

  157. Valero D, Serrano M (2010) Postharvest biology and technology for preserving fruit quality, 1st edn. CRC, Boca Raton. https://doi.org/10.1201/9781439802670

    Book  Google Scholar 

  158. Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CSR (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222. https://doi.org/10.1016/j.tifs.2018.08.006

    Article  CAS  Google Scholar 

  159. Wabali VC, Esiri A, Zitte L (2017) A sensory assessment of color and textural quality of refrigerated tomatoes preserved with different concentrations of potassium permanganate. Food Sci Nutr 5:434–438. https://doi.org/10.1002/fsn3.410

    Article  CAS  PubMed  Google Scholar 

  160. Wang S, Zhou Q, Zhou X, Wei B, Ji S (2018) The effect of ethylene absorbent treatment on the softening of blueberry fruit. Food Chem 246:286–294. https://doi.org/10.1016/j.foodchem.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  161. Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409. https://doi.org/10.1016/j.biotechadv.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  162. Watkins C (2007) The effect of 1-MCP on the development of physiological storage disorders in horticultural crops. Stewart Postharvest Rev 3:1–6. https://doi.org/10.2212/spr.2007.2.11

    Article  Google Scholar 

  163. WHO (2017) WHO model list of essential medicines, 20th list (March 2017, amended August 2017). World Health Organization http://www.who.int

  164. WHO (2018) Environmental health criteria. International Programme on Chemical Safety. World Health Organization https://www.who.int. Accessed 21 Nov 2018

  165. Wills R (2015) Low ethylene technology in non-optimal storage temperatures. In: Wills R, Golding J (eds) Advances in postharvest fruit and vegetable technology, 1st edn. CRC, Boca Raton, pp 167–190. https://doi.org/10.1201/b18489

    Chapter  Google Scholar 

  166. Wills R, Golding JB (2015) Reduction of energy usage in postharvest horticulture through management of ethylene. J Sci Food Agric 95:1379–1384. https://doi.org/10.1002/jsfa.6930

    Article  CAS  PubMed  Google Scholar 

  167. Wills R, Kim G (1995) Effect of ethylene on postharvest life of strawberries. Postharvest Biol Technol 6:249–255. https://doi.org/10.1016/0925-5214(95)00005-Q

    Article  CAS  Google Scholar 

  168. Wills R, Warton M (2004) Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J Am Soc Hortic Sci 129:433–438. https://doi.org/10.21273/JASHS.129.3.0433

    Article  CAS  Google Scholar 

  169. Wills R, Warton M, Mussa D, Chew L (2001) Ripening of climacteric fruits initiated at low ethylene levels. Aust J Exp Agric 41:89–92. https://doi.org/10.1071/EA00206

    Article  Google Scholar 

  170. Wills R, Harris D, Spohr L, Golding J (2014) Reduction of energy usage during storage and transport of bananas by management of exogenous ethylene levels. Postharvest Biol Technol 89:7–10. https://doi.org/10.1016/j.postharvbio.2013.11.002

    Article  CAS  Google Scholar 

  171. Wongs-Aree C, Noichinda S (2011) Sugar apple (Annona squamosa L.) and atemoya (A. cherimola Mill. × A. squamosa L.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits. Mangosteen to white sapote. Woodhead Publishing, Cambridge, pp 399–427e. https://doi.org/10.1533/9780857092618.399

    Chapter  Google Scholar 

  172. Wyrwa J, Barska A (2017) Innovations in the food packaging market: active packaging. Eur Food Res Technol 243:1681–1692. https://doi.org/10.1007/s00217-017-2878-2

    Article  CAS  Google Scholar 

  173. Yadav M, Singh S, Singh D, Singh G (2010) Effect of ethylene absorbent on quality and shelf-life of mango (Mangifera indica). Indian J Agric Sci 80:832–834

    Google Scholar 

  174. Yahia E, Serrano M, Valero D, González-Aguilar G (2017) Influence of postharvest technologies and handling practices on phytochemicals in fruits and vegetables. In: Yahia EM (ed) Fruit and vegetable phytochemicals: chemistry and human health, 2nd edn. Wiley-Blackwell, West Sussex. https://doi.org/10.1002/9781119158042.ch27

    Chapter  Google Scholar 

  175. Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17:165–199. https://doi.org/10.1111/1541-4337.12322

    Article  Google Scholar 

  176. Zagory D, Kader A (1988) Modified atmosphere packaging of fresh produce. Food Technol 42:70–77 76-77

    Google Scholar 

  177. Zewter A, Woldetsadik K, Workneh T (2012) Effect of 1-methylcyclopropene, potassium permanganate and packaging on quality of banana. Afr J Agric Res 7:2425–2437. https://doi.org/10.5897/AJAR11.1203

    Article  Google Scholar 

  178. Zhang J, Cheng D, Wang B, Khan I, Ni Y (2017) Ethylene control technologies in extending postharvest shelf life of climacteric fruit. J Agric Food Chem 65:7308–7319. https://doi.org/10.1021/acs.jafc.7b02616

    Article  CAS  PubMed  Google Scholar 

  179. Zhang Y, Liu Q, Rempel C (2018) Processing and characteristics of canola protein-based biodegradable packaging: a review. Crit Rev Food Sci Nutr 58:475–485. https://doi.org/10.1080/10408398.2016.1193463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to all companies which gave their information about their products and especially to those that have worked with us in this area. Finally, the authors would like to thank Dr. Jorge A. Cañas-Montoya (Universidad Autónoma de Coahuila, México) for the SEM image.

Funding

The authors are grateful to CONACYT (National Council of Science and Technology of Mexico) for the postgraduate grant (No. 291212) provided to Marianela Hazel Álvarez-Hernández.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Artés-Hernández.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Hernández, M.H., Martínez-Hernández, G.B., Avalos-Belmontes, F. et al. Potassium Permanganate-Based Ethylene Scavengers for Fresh Horticultural Produce as an Active Packaging. Food Eng Rev 11, 159–183 (2019). https://doi.org/10.1007/s12393-019-09193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09193-0

Keywords

Navigation