Skip to main content
Log in

Comparison of rice flowering-time genes under paddy conditions

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki T, Komeda Y (1993) Flowering in darkness in Arabidopsis thaliana. Plant J 4:801–811

    Article  Google Scholar 

  • Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G (2014) Trithorax group protein OsTrx1 controls flowering time in rice via interaction with Ehd3. Plant Physiol 164:1326–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FTlike gene expression independently of Hd1. Genes Dev 18:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999). GIGANTEA: A circadian clockcontrolled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Ariza J, Galbiati F, Gorett D, Brambilla V, Shrestha R, Pappolla A, Courtois B, Fornara F (2015) Loss of floral repressor function adapts rice to higher latitudes in Europe. J Exp Bot 66:2027–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong DH, Lee S, Kim SL, Hwang I, An G (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ 30:590–599

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Yang J, Yi J, An G (2015) Controlling flowering time by histone methylation and acetylation in Arabidopsis and rice. J Plant Biol 58:203–210

    Article  CAS  Google Scholar 

  • Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145:1484–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SL, Choi M, Jung KH, An G (2013) Analysis of the earlyflowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. J Exp Bot 64:4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for longday flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, An G (2015a) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short days in rice. J Plant Biol 58:137–145

    Article  CAS  Google Scholar 

  • Lee YS, An G (2015b) Regulation of flowering time in rice. J Plant Biol 58:353–360

    Article  CAS  Google Scholar 

  • Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30

    CAS  PubMed  Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of three QTLs, Hd1, Hd2 and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol 148:1425–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogiso-Tanaka E, Matsubara K, Yamamoto S-i, Nonoue Y, Wu J, Fujisawa H, Ishikubo H, Tanaka T, Ando T, Matsumoto T, Yano M (2013) Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One 8:e75959

    Article  Google Scholar 

  • Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T (2011) Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol 157:1128–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J 56:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Ryu CH, Lee S, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:D1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Nonoue Y, Liang ZW, Lin HX, Yamamoto S, Yamanouchi U, Yano M (2007) Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar ‘Nona Bokra’. Theor Appl Genet 114:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, You CJ, Li CS, Long T, Chen GX, Byrne ME, Zhang QF (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA 105:12915–12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lee S, Hang R, Kim SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J 73:566–578

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu T, Li B, Sui Y, Chen J, Shi J, Wing RA, Chen M (2012) Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genome. PLoS ONE 7:e50236

    Article  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, An G (2013) Utilization of T-DNA tagging lines in rice. J Plant Biol 56:85–90

    Article  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen H, Ren D, Tang H, Qiu R, Feng J, Long Y, Niu B, Chen D, Zhong T, Liu YG, Guo J (2015) Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol 208:936–948

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Yi, J., Jung, KH. et al. Comparison of rice flowering-time genes under paddy conditions. J. Plant Biol. 59, 238–246 (2016). https://doi.org/10.1007/s12374-016-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0029-0

Keywords

Navigation