Skip to main content
Log in

OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phytochromes recognize light signals and control diverse developmental processes. In rice, all three phytochrome genes—OsphyA, OsphyB, and OsphyC—are involved in regulating flowering time. We investigated the role of OsPhyA by comparing the osphyA osphyB double mutant to an osphyB single mutant. Plants of the double mutant flowered later than the single under short days (SD) but bolted earlier under long days (LD). Under SD, this delayed-flowering phenotype was primarily due to the decreased expression of Oryza sativa GIGANTEA (OsGI), which controls three flowering activators: Heading date 1 (Hd1), OsMADS51, and Oryza sativa Indeterminate 1 (OsId1). Under LD, although the expression of several repressors, e.g., Hd1, Oryza sativa CONSTANS-like 4 (OsCOL4), and AP2 genes, was affected in the double mutant, that of Grain number, plant height and heading date 7 (Ghd7) was the most significantly reduced. These results indicated that OsPhyA influences flowering time mainly by affecting the expression of OsGI under SD and Ghd7 under LD when phytochrome B is absent. We also demonstrated that far-red light delays flowering time via both OsPhyA and OsPhyB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrés F, Galbraith DW, Talon M, Domingo M (2009) Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol 151:681–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Araki T, Komeda Y (1993) Flowering in darkness in Arabidopsis thaliana. Plant J 4:801–811

    Article  Google Scholar 

  • Bagnall DJ, King RD, Whitelam GC, Boylan MT, Wagner D, Quail PH (1995) Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol 108:1495–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G (2014) Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol 164:1326–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA (2009) Obligate heterodimerization of Arabidopsis phytochrome C and E interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell 21:786–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms CT, Potrykus I (1978) Fractionation of plant protoplast types by iso-osmotic density gradient centrifugation. Theor Appl Genet 53:57–63

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld M, Tepperman JM, Clack T, Quail PH, Sharrock RA (1998) Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Genetics 149:523–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K (2005) Suppression of the floral activator gene Hd3a is the principal cause of the night break effect in rice. Plant Cell 17:3326–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa R, Shinomura T, Takano M, Shimamoto K (2009) Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet Syst 84:179–184

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    Article  CAS  PubMed  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamura Y (2011) Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23:1741–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, Lee S, Kim SL, Hwang I, An G (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant, Cell Environ 30:590–599

    Article  CAS  Google Scholar 

  • Johnson E, Bradley M, Harberd P, Whitelam GC (1994) Photoresponses of light-grown phyA mutants of Arabidopsis (Phytochrome A is required for the perception of daylength extensions). Plant Physiol 105:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HG, Jun SH, Kim J, Kawaide H, Kamiya Y, An G (1999) Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon. Plant Physiol 121:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145:1484–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Lee DY, Yang JI, Moon S, An G (2009) Cloning vectors for rice. J Plant Biol 52:73–78

    Article  CAS  Google Scholar 

  • Kim SL, Choi M, Jung KH, An G (2013) Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. J Exp Bot 64:4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, An G (2015) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol 58:137–145

    Article  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative suppressor of over expression of co1/agamous-like 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49:64–78

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30

    CAS  PubMed  Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31

    Article  PubMed  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of three QTLs, Hd1, Hd2 and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612

    Article  CAS  PubMed  Google Scholar 

  • McCormac AC, Wagner D, Boylan MT, Quail PH, Smith H, Whitelam GC (1993) Photoresponses of transgenic Arabidopsis seedlings expressing introduced phytochrome B-encoding cDNAs: evidence that phytochrome A and phytochrome B have distinct photoregulatory functions. Plant J 4:19–27

    Article  CAS  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon S, Giglione C, Lee DY, An S, Jeong DH, Meinnel T, An G (2008) Rice peptide deformylase PDF1B is crucial for development of chloroplasts. Plant Cell Physiol 49:1536–1546

    Article  CAS  PubMed  Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    CAS  PubMed  Google Scholar 

  • Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T (2011) Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol 157:1128–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–887

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Parks BM, Quail PH (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail PH (2002a) Photosensory perception and signalling in plant cells: new paradigms? Curr Opinion Cell Biol 14:180–188

    Article  CAS  PubMed  Google Scholar 

  • Quail PH (2002b) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Ryu CH, You JH, Kang HG, Hur J, Kim YH, Han MJ, An K, Chung BC, Lee CH, An G (2004) Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54:489–502

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T, Yamada Y, Muto A, Inkuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T (2013) Rice annotation project database (RAP-DB): and integrative and interactive database for rice genomics. Plant Cell Physiol 54:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 130:442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrock RA, Clack T (2004) Heterodimerization of type II phytochromes in Arabidopsis. Proc Natl Acad Sci USA 101:11500–11505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano M, Inagaki N, Xie X, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci USA 106:14705–14710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessadori F, Schulkes RK, van Driel R, Fransz P (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50:848–857

    Article  CAS  PubMed  Google Scholar 

  • Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LA, Spillane C, Pikaard CS, Fransz P, Peeters AJ (2009) Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5:e1000638

    Article  PubMed  PubMed Central  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • van Zanten M, Tessadori F, McLoughlin F, Smith R, Millenaar FF, van Driel R, Voesenek LA, Peeters AJ, Fransz P (2010) Photoreceptors CRYPTOCHROME2 and Phytochrome B control chromatin compaction in Arabidopsis. Plant Physiol 154:1686–1696

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner D, Quail PH (1995) Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc Natl Acad Sci USA 92:8596–8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Deng XW (2003) Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci 8:172–178

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Kagawa T, Takano M (2014) The phytochrome B/phytochrome C heterodimer is necessary for phytochrome C-mediated responses in rice seedlings. PLoS One 9:e97264

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu T, Li B, Sui Y, Chen J, Shi J, Wing RA, Chen M (2012) Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genome. PLoS One 7:e50236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee S, Hang R, Kim SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J 73:566–578

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Yi J, An G (2013) Utilization of T-DNA tagging lines in rice. J Plant Biol 56:85–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kyungsook An and Sunghee Hong for generating the T-DNA insertional lines and managing the transgenic seeds, and Priscilla Licht for her critical proofreading of the manuscript. We are also grateful to Dr. Kye-Hong Suh (Daegu University, Korea) for measuring the light spectrum and fluence rates of FR light. This work was supported, in part, by grants from the Basic Research Promotion Fund, Republic of Korea (KRF-2007-0093862); the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center, No. PJ01108001); the Rural Development Administration, Republic of Korea; and Kyung Hee University (20130214).

Author’s contribution

YSL designed the experimental plan, generated double mutants, prepared RNA samples, extracted RNA, monitored expression profiling, observed flowering times, and performed far-red light treatment. YSL and JY prepared protoplast, performed MUG assay, and RNA in situ hybridization. YSL and GA analyzed data and wrote the manuscript. GA provided overall direction for this project and helped with the organization and editing of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Yi, J. & An, G. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Mol Biol 91, 413–427 (2016). https://doi.org/10.1007/s11103-016-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0474-7

Keywords

Navigation