Skip to main content
Log in

Controlling flowering time by histone methylation and acetylation in arabidopsis and rice

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana plants flower in Spring in order to produce offspring before they are out-competed by other species. By contrast, rice (Oryza sativa) flowers in Summer after a lengthy period of vegetative growth that will support the maximum amount of seed production. As model systems, these two species are valuable for studies that explore how plants perceive their environmental conditions and optimize the timing of floral development. In both Arabidopsis and rice, FLOWERING LOCUS T (FT) family proteins, or florigens, are produced in the leaf phloem and moved to the shoot apical meristem (SAM). Whereas the florigens in rice immediately induce downstream genes in the SAM to initiate the transition from vegetative to reproductive growth, their functioning in Arabidopsis is inhibited by FLOWERING LOCUS C (FLC). Transcript levels of FT and FLC are regulated epigenetically. Lysine residues of the histone N-tails covering the FT and FLC chromatins are methylated by SET-domain group (SDG) proteins that contain the evolutionarily conserved SET domain while the methyl groups are removed by Jumonji C domain-containing demethylases. Transcript levels of both genes are also modulated by altering the acetylation of the histone tail. In rice, expression by Heading date 3a and Rice FT 1 (RFT1) that produces major florigens are epigenetically controlled by OsSDG724 and OsSDG725. These SDG proteins also methylate OsMADS50 chromatin, a long daypreferential flowering activator. Two other methyltransferases, OsSDG711 and OsSDG718, down-regulate OsLF, a repressor of Heading date 1. Finally, the demethylase OsJMJ701 protein delays flowering by suppressing RFT1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Kobayash Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev 13:627–639

    Article  Google Scholar 

  • Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martínez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastomaassociated protein. Nat Genet 36:162–166

    Article  CAS  PubMed  Google Scholar 

  • Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol 6: a019471

    Article  Google Scholar 

  • Berger S (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH (2009) SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol 151:1476–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809:567–576

    Article  CAS  PubMed  Google Scholar 

  • Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K (2008) The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315:355–368

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Roberts AC, Carmody ME, Pogson BJ (2010) Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Mol Plant 3:174–191

    Article  CAS  PubMed  Google Scholar 

  • Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANSLIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758–768

    Article  CAS  PubMed  Google Scholar 

  • Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G (2014) Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol 164:1326–1337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datta S, Hettiarachchi GHCM, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18:70–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Lucia F, Crevillen P, Jones AM, Greb T, Dean C (2008) A PHDPolycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105:16831–16836

    Article  PubMed Central  PubMed  Google Scholar 

  • Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X, Sarid-Krebs L, Goodrich J, Turck F (2011) Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of polycomb group protein repression. Plant Cell 23:3204–3214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer A, Hofmann I, Naumann K, Reuter G (2006) Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J Plant Physiol 163:358–368

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Gan ES, Xu Y, Wong JY, Goh JG, Sun B, Wee WY, Huang J, Ito T (2014) Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun 5:5098

    Article  CAS  PubMed  Google Scholar 

  • Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, Jorstad TS, Wilson ZA, Aalen RB (2009) The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One 4: e7817

    Article  Google Scholar 

  • Grzenda A, Lomberk G, Zhang JS, Urrutia R (2009) Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789:443–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu X, Wang Y, He Y (2013) Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. PLoS Biol 11: e1001649

    Article  Google Scholar 

  • Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci USA 107:18557–18562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassidim M, Harir Y, Yakir E, Kron I, Green RM (2009) Overexpression of CONSTANS-LIKE 5 can induce fowering in shortday grown Arabidopsis. Planta 230:481–491

    Article  CAS  PubMed  Google Scholar 

  • He Y (2009) Control of the transition to flowering by chromatin modifications. Mol Plant 4:554–564

    Article  Google Scholar 

  • He Y (2012) Chromatin regulation of flowering. Trends Plant Sci 17:556–562

    Article  CAS  PubMed  Google Scholar 

  • He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754

    Article  CAS  PubMed  Google Scholar 

  • Hepworth SR, Valverge F, Ravenscoft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4207–4391

    Article  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Aoki M, Kurotani K, Yokoi S, Shinomura T, Takano M, Shimamoto K (2011) Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day lenHd3agth in rice. Mol Genet Genom 285:461–470

    Article  CAS  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    Article  CAS  PubMed  Google Scholar 

  • Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH, Amasino RM, Noh B, Noh YS (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4: e8033

    Article  Google Scholar 

  • Jiang D, Wang Y, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3: e3404

    Article  Google Scholar 

  • Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145:1484–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17:3301–3310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Villar CB (2008) Programming of gene expression by polycomb group proteins. Trends Cell Biol 18:236–243

    Article  PubMed  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RTT1 are essential for flowering in rice. Development 135:767–774

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lan F, Nottke AC, Shi Y (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20:316–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, An G (2007) Diversified mechanisms for regulating flowering time in a short-day plant rice. J Plant Biol 50:241–248

    Article  CAS  Google Scholar 

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, An G (2015) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol 58:137–145

    Article  CAS  Google Scholar 

  • Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30

    CAS  PubMed  Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31

    Article  Google Scholar 

  • Li C, Huang L, Xu C, Zhao Y, Zhou DX (2011) Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice. PLoS One 6: e21789

    Article  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhou C, Zhao Y, Zhou S, Wang W, Zhou DX (2014) The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Front Plant Sci 5:591

    PubMed Central  PubMed  Google Scholar 

  • Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Li G, Cui X, Liu C, Wang XJ, Cao X (2008) Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol 50:886–896

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Huang X, Ouyang Y, Yao J (2013) Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One 8: e65426

    Article  Google Scholar 

  • Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612

    Article  CAS  PubMed  Google Scholar 

  • Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769:316–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onouchi H, Igeno MI, Perileux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog 6: e1001137

    Article  Google Scholar 

  • Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J 56:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382

    Article  CAS  PubMed  Google Scholar 

  • Pineiro M, Gomez-Mena C, Schaffer R, Martinez-Zapater JM, Coupland G (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 7:1552–1562

    Article  Google Scholar 

  • Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou G, Sadder M, Al-Abdallat A, Xia Y, Lu G, Ladunga I, Avramova Z (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samach A, Coupland G (2000) Time measurement and the control of flowering in plants. Bioessays 22:38–47

    Article  CAS  PubMed  Google Scholar 

  • Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531–3542

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Finnegan EJ, Dennis ES, Peacock WJ (2006) Quantitative effects of vernalization on FLC and SOC1 expression. Plant J 45:871–883

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot 114:1445–1458

    Article  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trend Plant Sci 18:575–583

    Article  CAS  Google Scholar 

  • Song YH, Lee I, Lee SY, Imaizumi T, Hong JH (2012) CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J 69:332–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui P, Shi J, Gao X, Shen WH, Dong A (2013) H3K36 methylation is involved in promoting rice flowering. Mol Plant 6:975–977

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell 24:3235–3247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  • Tamada Y, Yun JY, Woo SC, Amasino RM (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8:359–377

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Chen ZJ (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci USA 98:200–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103:14631–14636

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu G, Poethig S (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Jiang D, Jiang J, He Y (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62:663–673

    Article  CAS  PubMed  Google Scholar 

  • Yan, J, Lee S, Hang R, Kim SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J 73:566–578

    Article  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao X, Feng H, Yu Y, Dong A, Shen WH (2013) SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS One 8: e56537

    Article  Google Scholar 

  • Yokoo T, Saito H, Yoshitake Y, Xu Q, Asami T, Tsukiyama T, Teraishi M, Okumoto Y, Tanisaka T (2014) Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS One 9: e96064

    Article  Google Scholar 

  • Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Ma H (2008) Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence. BMC Evo Biol 8:294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.J., Yang, J., Yi, J. et al. Controlling flowering time by histone methylation and acetylation in arabidopsis and rice. J. Plant Biol. 58, 203–210 (2015). https://doi.org/10.1007/s12374-015-0219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0219-1

Keywords

Navigation