Skip to main content
Log in

Diversified mechanisms for regulating flowering time in a short-day plant rice

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Flowering in rice is influenced by not only endogenous factors that comprise an autonomous pathway, but also environmental effects, such as photoperiod, water availability, and temperature just before floral initiation. Recent molecular genetics studies have elucidated the functional roles of genes involved in the photoperiod pathway, e.g., photoreceptors, circadian clock components, and short-day (SD) promotion factors. Although these molecular players are well conserved between rice andArabidopsis, their actual genetic functions are distinct. This is exemplified byHd1 (aCO counterpart) and phytochromes, in particular, ricePHYA. Hd1 has a dual role in regulating flowering time and the expression ofHd3a (anFT counterpart) repression under long-day (LD) conditions while promotion under SDs. Models have been proposed to explain these photoperiod-dependent antagonistic activities. Some regulatory factors are present in only one of the model systems, e.g.,FLC inArabidopsis orEhd1 in rice. Furthermore, epistatic relationships vary among such flowering regulators asHd3a (FT), OsMADS50 (SOCT), andOsMADS14 (AP1). Further experiments to probe these differences will be essential to enlarging our understanding of the diversified flowering regulation mechanisms in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alba R, Kelmenson PM, Cordonnier-Pratt MM, Pratt LH (2000) The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol Biol Evol17: 362–373

    PubMed  CAS  Google Scholar 

  • An C, An K (2000) Overriding photoperiod sensitivity of flowering time by constitutive expression of a MADS box gene. J Plant Biol43: 28–32

    CAS  Google Scholar 

  • Ausin I, Alonso-Blanco C, Martinez-Zapater JM (2005) Environmental regulation of flowering. Intl J Dev Biol49: 689–705

    Article  CAS  Google Scholar 

  • Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time inArabidopsis thaliana. Nat Genet33: 168–171

    Article  PubMed  CAS  Google Scholar 

  • Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Deutsch Bot Ges54: 590–607

    Google Scholar 

  • Childs KL, Miller FR, Pratt MMC, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol113:611–619

    Article  PubMed  CAS  Google Scholar 

  • Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family inArabidopsis is encoded by 5 genes: The sequences and expression of PHYD and PHYE. Plant Mol Biol25: 413–427

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: A review of recent progress. J Exp Bot57: 3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003)TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol132: 1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004)Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently ofHd1. Genes Dev18: 926–936

    Article  PubMed  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) TheELF4 gene controls circadian rhythms and flowering time inArabidopsis thaliana. Nature419: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell96: 271–290

    Article  PubMed  CAS  Google Scholar 

  • Eastburn D, Han M (2004) When Ras signaling reaches the mediator. Dev Cell6: 158–159

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999)GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering inArabidopsis and encodes a protein with several possible membrane-spanning domains. EMBOJ18: 4679–4688

    Article  CAS  Google Scholar 

  • Fujino K (2003) Photoperiod sensitivity gene controlling heading date in rice cultivars in the northernmost region of Japan. Euphytica131: 97–103

    Article  CAS  Google Scholar 

  • Goto N, Kumagai T, Koomneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants ofArabidopsis thaliana, a long-day plant. Physiol Plant83: 209–215

    Article  Google Scholar 

  • Hamner KC, Bonner J (1938) Photoperiodism in regulation to hormones as factors in floral initiation and development. Bot Gaz100: 388–431

    Article  CAS  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature422: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol47: 915–925

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa K (1989) The Growing Rice Plant, Ed 1. Nobunkyo, Tokyo, pp 3–6

    Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: Not only by coincidence. Trends Plant Sci11: 550–558

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K (2005) Suppression of the floral activatorHd3a is the principal cause of the night break effect in rice. Plant Cell17: 3326–3336

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev16: 2006–2020

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J22: 391–399

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: Genomic and genetic comparison of flowering pathways in rice andArabidopsis. Curr Opin Plant Biol6: 113–120

    Article  PubMed  CAS  Google Scholar 

  • Jang SH, An K, Lee S, An GH (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol43: 230–238

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An GH (2000) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed6: 581–592

    Article  CAS  Google Scholar 

  • Johnson CH (1999) Forty years of PRCs: What have we learned? Chronobiol Int16: 711–743

    Article  PubMed  CAS  Google Scholar 

  • Kang HS, Jang JW (2004) Flowering patterns among angiosperm species in Korea: Diversity and constraints. J Plant Biol47: 348–355

    Article  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science286: 1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002)Hd3a, a rice ortholog of theArabidopsis FT gene, promotes transition to flowering downstream ofHd1 under short-day conditions. Plant Cell Physiol43: 1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Hong SM, Yoo SJ, Park OK, Lee JS, Ahn JH (2006) Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol Plant126: 475–483

    CAS  Google Scholar 

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time geneOsMADS50, the putativeSUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J38: 754–764

    Article  PubMed  CAS  Google Scholar 

  • Lin CT (2002) Blue light receptors and signal transduction. Plant Cell14:S207-S225

    PubMed  CAS  Google Scholar 

  • Lin HX, Ashikari M, Yamanouchi U, Sasaki T, Yano M (2002) Identification and characterization of a quantitative trait locus,Hd9, controlling heading date in rice. Breed Sci52: 35–41

    Article  CAS  Google Scholar 

  • Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait lociHd4 andHd5 controlling heading date in rice. Breed Sci53: 51–59

    Article  CAS  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of three QTLs,HdT, Hd2, andHd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet101: 1021–1028

    Article  CAS  Google Scholar 

  • Maheswaran M, Huang N, Sreerangasamy SR, McCouch SR (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed6: 145–155

    Article  CAS  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annualArabidopsis. Plant Physiol137: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants inArabidopsis identified by luciferase imaging. Science267: 1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Mockler T, Yang HY, Yu XH, Parikh D, Cheng YC, Dolan S, Lin CT (2003) Regulation of photoperiodic flowering byArabidopsis photoreceptors. Proc Natl Acad Sci USA100: 2140–2145

    Article  PubMed  CAS  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus,Hd3, into two loci,Hd3a andHd3b, controlling heading date in rice. Theor Appl Genet104: 772–778

    Article  PubMed  CAS  Google Scholar 

  • Monte E, Alonso JM, Ecker JR, Zhang YL, Li X, Young J, Austin-Phillips S, Quail PH (2003) Isolation and characterization ofphyC mutants inArabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell15: 1962–1980

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators inArabidopsis. Plant Cell Physiol46: 292–299

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: A QTL analysis using a phenological model. Theor Appl Genet110: 778–786

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 duringArabidopsis development. Plant Physiol118: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Noh YS (2006) Chromatin-mediated regulation of flowering time in Arabidopsis. Physiol Plant126: 484–493

    CAS  Google Scholar 

  • Nunes MV, Saunders D (1999) Photoperiodic time measurement in insects: A review of clock models. J Biol Rhythms14: 84–104

    Article  Google Scholar 

  • Okumoto Y, Ichitani K, Inoue H, Tanisaka T (1996) Photoperiod insensitivity gene essential to the varieties grown in the northern limit region of paddy rice(Oryza sativa L.) cultivation. Euphytica92: 63–66

    Article  Google Scholar 

  • Onouchi H, Igeno Ml, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressingCONSTANS demonstrates novel interactions amongArabidopsis flowering-time genes. Plant Cell12: 885–900

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Amer Nat108: 261–295

    Article  Google Scholar 

  • Roenneberg T, Merrow M (2000) Circadian clocks: Omnes viae Romam ducunt. Curr Biol10: R742-R745

    Article  PubMed  CAS  Google Scholar 

  • Roux F, Touzet P, Cuguen J, le Corre V (2006) How to be early flowering: An evolutionary perspective. Trends Plant Sci11: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles ofCONSTANS target genes in reproductive development ofArabidopsis. Science288: 1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Sakamoto I, Shirakawa K, Nakasone S (1988) Chromosomal location of an earliness geneEf1 of rice,Oryza sativa L. Jpn J Breed38: 385–396

    Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation ofArabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell93: 1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development130: 6001–6012

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Lu Z, Li R (1965) Genetic analysis for some characters in the breeding of early-maturing and dwarf rice types. Acta Agron Sinica4: 391–402

    Google Scholar 

  • Shibata M, Sasaki K, Shimazaki Y (1973) Effects of air temperature and water temperature at each stage of the growth of lowland rice: II. Effect of air temperature and water temperature on the heading date. Proc Crop Sci Soc Jpn42: 267–274

    Google Scholar 

  • Shin BS, Lee JH, Lee JH, Jeong HJ, Yun CH, Kim JK (2004) Circadian regulation of rice (Oryza sativa L.)CONSTANS-like gene transcripts. Mol Cells17: 10–16

    PubMed  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas R, Panda S, Kreps JA, Kay SA (2000) Cloning of theArabidopsis clock coneTOC1, an autoregulatory response regulator homolog. Science289: 768–771

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Lopez R Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001)CONSTANS mediates between the circadian clock and the control of flowering inArabidopsis. Nature410: 1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Izawa T, Oikawa T, Shimamoto K (2001) Light regulation of circadian clock controlled gene expression in rice. Plant J26: 607–615

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenicArabidopsis and byFLC in transgenic rice. Plant Biotechnol J1: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001)Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA98: 7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell17: 3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiod ism in Plants. Academic Press, London

    Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA100: 13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation ofCONSTANS protein in photoperiodic flowering. Science303: 1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Vergara BS, Chang TT (1985) The Flowering Response of the Rice Plant to Photoperiod: A Review of the Literature, Ed 4. International Rice Research Institute, Manila

    Google Scholar 

  • Vergara BS, Lilis R (1968) Studies on the responses of the rice plant to photoperiod: IV. Effect of temperature during photoinduction. Philip Agric51: 66–71

    Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of theCIRCADIAN CLOCK ASSOCIATED 1 (COW) gene disrupts circadian rhythms and suppresses its own expression. Cell93: 1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics154: 885–891

    PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel R Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheatVRN2 gene is a flowering repressor down-regulated by vernalization. Science303: 1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000)Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to theArabidopsis flowering time geneCONSTANS. Plant Cell12: 2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin HX, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol127: 1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Mazzella MA, Casai JJ (2000) A quadruple photoreceptor mutant still keeps track of time. Curr Biol10: 1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Yin XV, Kropff MJ, Goudriaan J (1997) Changes in temperature sensitivity of development from sowing to flowering in rice. Crop Sci37: 1787–1794

    Google Scholar 

  • Yokoo M, Kikuchi F (1982) Monogenic control of basic vegetative phase and photoperiod sensitive phase in rice. Jpn J Breed32: 1–8

    Google Scholar 

  • Yu CJ, Yao YT (1967) Photoperiodic studies on rice: VI. Further studies on turning point of short day effect and long day effect on certain short day rice varieties. Bot Bul Acad Sinica8: 149–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., An, G. Diversified mechanisms for regulating flowering time in a short-day plant rice. J. Plant Biol. 50, 241–248 (2007). https://doi.org/10.1007/BF03030651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030651

Keywords

Navigation