Skip to main content
Log in

CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic arabidopsis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

As a large family of regulatory proteins, NAC (for NAM, ATAF1,2 and CUC2) proteins play important roles in various plant developmental processes and response to environmental stresses. Several studies have investigated the role of NAC transcription factors during these processes. In the present study, a gene encoding a NAC protein from chickpea (Cicer arietinum L.), CarNAC2, which encodes a putative protein of 191 amino acids, was isolated and characterized. Analyses of mRNA levels revealed that the expression of CarNAC2 was up-regulated by drought and ABA (abscisic acid). CarNAC2::GFP fusion protein was localized in the nucleus. Yeast one-hybrid assay showed that CarNAC2 possesses transcriptional activation activity which was located in the C-terminal region. Overexpression of CarNAC2 enhanced drought tolerance in transgenic Arabidopsis plants. In addition, transgenic plant overexpressing CarNAC2 displayed lower germination vigor and later blooming than wild type plants. Overall, our findings suggest that CarNAC2 protein as a transcriptional activator is involved in response to drought stress and various developmental processes in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Chen C, Wanduragala S, Becker DF, Dickman MB (2006) Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol 72:4001–4006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke J, Romagosa M, Jana I, Srivastava JP, McCaig TN (1989) Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments. Can J Plant Sci 69:1075–1081

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identication of tissue-specic or stressresponsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT Database (2008) http://www.faostat.fao.org/.

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao F, Xiong AS, Peng RH, Jin XF, Xu J, Zhu B, Chen JM, Yao QH (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Organ Cult 100:255–262

    Article  CAS  Google Scholar 

  • Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun 376:578–583

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and preharvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley, RT (1988) Leaf disc transformation. Plant Mol Biol Manual. Kluwer, Dordrecht, pp 1–9

    Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, You J, Fang Y, Zhu X, Qi Z, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Huh SU, Lee SB, Kim HH, Paek KH (2012) ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Mol Cells 34:305–313

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88

    Article  CAS  PubMed  Google Scholar 

  • Meng QC, Zhang CH, Gai JY, Yu DY (2007) Molecular cloning, sequence characterization and tissue-specic expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol 51:617–630

    Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Simon CJ (1994) Potential for wild species in cool season food legume breeding. Euphytica 73:109–114

    Article  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005b) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science 169:785–797

    Article  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005a) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156:537–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009a) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166:1934–1945

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H (2009b) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally and stress regulated. Plant Physiol Biochem 47:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Yu XW, Cheng HY, Shi QH, Zhang H, Li JG, Ma H (2010) Cloning and characterization of a novel NAC family gene CarNAC1 from Chickpea (Cicer arietinum L.). Mol Biotechnol 44:30–40

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 13:964–969

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Ev 45:9–17

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: exible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger chomeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    Article  CAS  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Culver JN (2012) DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus. BMC Plant Biol 12:157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2:e642

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang DZ, Wang PH, Zhao HX (1990) Determination of the content of free proline in wheat leaves. Plant Physiol Commun 4:62–65

    Google Scholar 

  • Zhao CS, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    Article  CAS  PubMed  Google Scholar 

  • Zheng XN, Chen B, Lu GJ, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Ma or Hua Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Peng, H., Liu, Y. et al. CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic arabidopsis. J. Plant Biol. 57, 55–66 (2014). https://doi.org/10.1007/s12374-013-0457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0457-z

Key words

Navigation