Skip to main content
Log in

ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis

  • Research Article
  • Published:
Molecules and Cells

Abstract

The transcription factor ATAF2, one of the plant specific NAC family genes, is known as repressor of pathogenesisrelated genes and responsive to the diverse defense-related hormones, pathogen infection, and wounding stress. Furthermore, it is important to consider that tryptophandependant IAA biosynthesis pathway can be activated by wounding and pathogen. We found that ATAF2pro::GUS reporter was induced upon indole-3-acetonitrile (IAN) treatments. And ataf2 mutant showed reduced sensitivity to IAN whereas 35S::ATAF2 plants showed hyper-sensitivity to IAN. IAN biosynthesis required nitrilase involved in the conversion of IAN to an auxin, indole-3-acetic acid (IAA). We found that the NIT2 gene was repressed in ataf2 knockout plants. Expression of both ATAF2 and NIT2 genes was induced by IAN treatment. Transgenic plants overexpressing ATAF2 showed up-regulated NIT2 expression. ATAF2 activated promoter of the NIT2 gene in Arabidopsis protoplasts. Electrophoretic mobility shift assay revealed that NIT2 promoter region from position -117 to -82 contains an ATAF2 binding site where an imperfect palindrome sequence was critical to the protein-DNA interaction. These findings indicate that ATAF2 regulates NIT2 gene expression via NIT2 promoter binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Church, G.M., and Gilbert, W. (1984). Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43, 745–757.

    Article  PubMed  CAS  Google Scholar 

  • Duval, M., Hsieh, T.F., Kim, S.Y., and Thomas, T.L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, H.A., Olsen, A.N., Larsen, S., and Lo Leggio, L. (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y., You, J., Xie, K., Xie, W., and Xiong, L. (2008). Systematic sequence analysis and identification of tissue-specific or stressresponsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280, 547–563.

    Article  PubMed  CAS  Google Scholar 

  • Grsic, S., Sauerteig, S., Neuhaus, K., Albrecht, M., Rossiter, J., and Ludwig-Muller, J. (1998). Physiological analysis of transgenic Arabidopsis thaliana plants expressing one nitrilase isoform in sense or antisense direction. J. Plant Physiol. 153, 446–456.

    Article  CAS  Google Scholar 

  • He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., and Chen, S.Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903–916.

    Article  PubMed  CAS  Google Scholar 

  • Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53, 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Huh, S.U., Lee, I.J., Ham, B.K., and Paek, K.H. (2012). Nicotiana tabacum Tsip1-interacting ferredoxin 1 affects biotic and abiotic stress resistance. Mol. Cells 34, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J.G., Nakao, T., Matsuda, F., Nishioka, T., Miyagawa, H., and Wakasa, K. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54, 481–495.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Yang, B., Harris, N.S., and Deyholos, M.K. (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 58, 3591–3607.

    Article  PubMed  CAS  Google Scholar 

  • Jin, J.B., Kim, Y.A., Kim, S.J., Lee, S.H., Kim, D.H., Cheong, G.W., and Hwang, I. (2001). A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13, 1511–1526.

    PubMed  CAS  Google Scholar 

  • Normanly, J., and Bartel, B. (1999). Redundancy as a way of life-IAA metabolism. Curr. Opin. Plant Biol. 2, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Normanly, J., Grisafi, P., Fink, G.R., and Bartel, B. (1997). Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9, 1781–1790.

    PubMed  CAS  Google Scholar 

  • Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Park, J., Kim, Y.S., Kim, S.G., Jung, J.H., Woo, J.C., and Park, C.M. (2011). Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 156, 537–549.

    Article  PubMed  CAS  Google Scholar 

  • Pollmann, S., Muller, A., Piotrowski, M., and Weiler, E.W. (2002). Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292.

    Article  PubMed  CAS  Google Scholar 

  • Souer, E., van Houwelingen, A., Kloos, D., Mol, J., and Koes, R. (1996). The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481–2498.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Goregaoker, S.P., and Culver, J.N. (2009). Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J. Virol. 83, 9720–9730.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, A.W., and Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735.

    Article  PubMed  CAS  Google Scholar 

  • Wray, G.A., Hahn, M.W., Abouheif, E., Balhoff, J.P., Pizer, M., Rockman, M.V., and Romano, L.A. (2003). The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K., and Demura, T. (2011). VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66, 579–590.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., and Last, R.L. (1996). Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8, 2235–2244.

    PubMed  CAS  Google Scholar 

  • Zhong, R., Lee, C., and Ye, Z.H. (2010). Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol. Plant 3, 1087–1103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hee Paek.

About this article

Cite this article

Huh, S.U., Lee, SB., Kim, H.H. et al. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Mol Cells 34, 305–313 (2012). https://doi.org/10.1007/s10059-012-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0122-2

Keywords

Navigation