Skip to main content
Log in

Immersive Commodity Telepresence with the AVATRINA Robot Avatar

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Immersive robotic avatars have the potential to aid and replace humans in a variety of applications such as telemedicine and search-and-rescue operations, reducing the need for travel and the risk to people working in dangerous environments. Many challenges, such as kinematic differences between people and robots, reduced perceptual feedback, and communication latency, currently limit how well robot avatars can achieve full immersion. This paper presents AVATRINA, a teleoperated robot designed to address some of these concerns and maximize the operator’s capabilities while using a commodity light-weight human–machine interface. Team AVATRINA took 4th place at the recent $10 million ANA Avatar XPRIZE competition, which required contestants to design avatar systems that could be controlled by novice operators to complete various manipulation, navigation, and social interaction tasks. This paper details the components of AVATRINA and the design process that contributed to our success at the competition. We highlight a novel study on one of these components, namely the effects of baseline-interpupillary distance matching and head mobility for immersive stereo vision and hand-eye coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availablity

The televisualization dataset generated in the current study is not publicly available to protect the privacy of the subjects but is available from any corresponding author on reasonable request.

Notes

  1. https://www.vrotors.com/

  2. https://www.xprize.org/prizes/avatar

  3. https://youtu.be/lOnV1Go6Op0?t=28364

  4. https://www.access-board.gov/ada/

  5. https://zoom.us/

  6. https://www.smartfoxserver.com/

References

  1. Agrawal A, Verschueren R, Diamond S, Boyd S (2018) A rewriting system for convex optimization problems. J Control Decis 5(1):42–60

    Article  MathSciNet  MATH  Google Scholar 

  2. Akinc M, Bekris KE, Chen BY, Ladd AM, Plaku E, Kavraki LE (2005) Probabilistic roadmaps of trees for parallel computation of multiple query roadmaps. In: Siciliano B, Khatib O, Dario P, Chatila R (Eds) Robotics research. The eleventh international symposium, Springer, Berlin Heidelberg, vol 15, pp 80–89. [Online]. Available: http://link.springer.com/10.1007/11008941_9

  3. Avalos J, Ramos OE (2017) Real-time teleoperation with the baxter robot and the kinect sensor. In: 2017 IEEE 3rd Colombian conference on automatic control (CCAC), pp 1–4

  4. Behnke S, Adams JA, Locke D (2023) The \$10 million ANA avatar XPRIZE competition advanced immersive telepresence systems. IEEE Robot Autom Magaz 30:98–104

    Article  Google Scholar 

  5. Bickel P, Diggle P, Fienberg S, Gather U, Olkin I, Zeger S (2009) Springer series in statistics

  6. Bowyer SA, Davies BL, Rodriguez FY (2014) Active constraints/virtual fixtures: a survey. IEEE Trans Robot 30(1):138–157

    Article  Google Scholar 

  7. Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30

    Article  MATH  Google Scholar 

  8. Bruder G, Steinicke F, Nüchter A (2014) Poster: immersive point cloud virtual environments. In: 2014 IEEE symposium on 3D user interfaces (3DUI), pp 161–162

  9. Burns JO, Kring DA, Hopkins JB, Norris S, Lazio TJW, Kasper J (2013) A lunar L2-Farside exploration and science mission concept with the orion multi-purpose crew vehicle and a teleoperated lander/rover. Adv Space Res 52(2):306–320

    Article  Google Scholar 

  10. Carlone L, Pinciroli C (2019) “Robot Co-design: Beyond the Monotone Case,’’ in. International Conference on Robotics and Automation (ICRA) 2019:3024–3030

    Article  MATH  Google Scholar 

  11. Chen Y, Zhang B, Zhou J, Wang K (2020) Real-time 3D unstructured environment reconstruction utilizing VR and Kinect-based immersive teleoperation for agricultural field robots. Comput Electron Agric 175:105579

    Article  MATH  Google Scholar 

  12. Draper JV, Kaber DB, Usher JM (1998) Telepresence. Hum Factors 40(3):354–375. https://doi.org/10.1518/001872098779591386

    Article  Google Scholar 

  13. Frith C (2009) Role of facial expressions in social interactions. Philos Trans Royal Soc B Biol Sci 364(1535):3453–3458

    Article  MATH  Google Scholar 

  14. Gordon CC, Blackwell CL, Bradtmiller B, Parham JL, Barrientos P, Paquette S, Corner BD, Carson J, Venezia J, Rockwell BM, Mucher M, Kristensen S (2014) 2012 anthropometric survey of u.s. army personnel: methods and summary statistics

  15. Hansberger JT, Peng C, Mathis V, Areyur Shanthakumar V, Meacham SC, Cao L, Blakely VR (2017) Dispelling the gorilla arm syndrome: the viability of prolonged gesture interactions. In: Lackey S, Chen J (Eds.) Virtual, augmented and mixed reality, Springer International Publishing, Cham, vol 10280, pp 505–520. Available: https://link.springer.com/10.1007/978-3-319-57987-0_41

  16. Haruna M, Ogino M, Tagashira S, Kashiwa M, Morita S, Koike-Akino T, Imai K, Zuho T, Makita M, Takahashi Y (2023) Avatar technologies of team LAST MILE toward mobile smart device operation service. In: 2nd workshop towards robot avatars, ICRA 2023, London, [Online]. Available: https://www.ais.uni-bonn.de/ICRA2023AvatarWS/contributions/ICRA_2023_Avatar_WS_Haruna.pdf

  17. Hauser K, Watson E, Bae J, Bankston J, Behnke S, Borgia B, Catalano M, Dafarra S, van Erp J, Ferris T, Fishel J, Hoffman G, Ivaldi S, Kanehiro F, Kheddar A, Lannuzel G, Morie J, Naughton P, NGuyen S, Oh P, Padir T, Pippine J, Park J, Pucci D, Vaz J, Whitney P, Wu P, Locke D (2023) Analysis and perspectives on the ana avatar xprize competition. Int J Soc Robot (submitted)

  18. Hibbard PB, van Dam LC, Scarfe P (2020) The implications of interpupillary distance variability for virtual reality. In: 2020 international conference on 3D immersion (IC3D), pp 1–7, 0.5

  19. Jamwal PK, Xie S, Aw KC (2009) Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. In: Robotics and autonomous systems, 5th international conference on computational intelligence, robotics and autonomous systems (5th CIRAS), vol 57, No 10, pp 1018–1027. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889009001080

  20. Johnson M, Shrewsbury B, Bertrand S, Wu T, Duran D, Floyd M, Abeles P, Stephen D, Mertins N, Lesman A, Carff J, Rifenburgh W, Kaveti P, Straatman W, Smith J, Griffioen M, Layton B, de Boer T, Koolen T, Neuhaus P, Pratt J (2015) Team IHMC’s lessons learned from the DARPA robotics challenge trials. J Field Robot 32(2):192–208

    Article  Google Scholar 

  21. Karumanchi S, Edelberg K, Baldwin I, Nash J, Reid J, Bergh C, Leichty J, Carpenter K, Shekels M, Gildner M, Newill-Smith D, Carlton J, Koehler J, Dobreva T, Frost M, Hebert P, Borders J, Ma J, Douillard B, Backes P, Kennedy B, Satzinger B, Lau C, Byl K, Shankar K, Burdick J (2017) Team RoboSimian: semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals. J Field Robot 34(2):305–332

    Article  Google Scholar 

  22. Kemp CC, Edsinger A, Clever HM, Matulevich B (2022) The design of stretch: a compact, lightweight mobile manipulator for indoor human environments. In: International conference on robotics and automation (ICRA), pp 3150–3157

  23. Klamt T, Rodriguez D, Schwarz M, Lenz C, Pavlichenko D, Droeschel D, Behnke S (2018) Supervised autonomous locomotion and manipulation for disaster response with a centaur-like robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1–8

  24. Klamt T, Schwarz M, Lenz C, Baccelliere L, Buongiorno D, Cichon T, DiGuardo A, Droeschel D, Gabardi M, Kamedula M, Kashiri N, Laurenzi A, Leonardis D, Muratore L, Pavlichenko D, Periyasamy AS, Rodriguez D, Solazzi M, Frisoli A, Gustmann M, Roßmann J, Süss U, Tsagarakis NG, Behnke S (2020) Remote mobile manipulation with the centauro robot: full-body telepresence and autonomous operator assistance. J Field Robot 37(5):889–919

    Article  Google Scholar 

  25. Kot T, Novák P (2018) Application of virtual reality in teleoperation of the military mobile robotic system TAROS. Int J Adv Rob Syst 15(1):1729881417751545

    MATH  Google Scholar 

  26. Kris H (2023) Klampt python API. [Online; accessed 11-August-2023]. [Online]. Available: http://motion.cs.illinois.edu/software/klampt/latest/pyklampt_docs/

  27. Krotkov E, Hackett D, Jackel L, Perschbacher M, Pippine J, Strauss J, Pratt G, Orlowski C (2017) The DARPA robotics challenge finals: results and perspectives. J Field Robot 34(2):229–240

    Article  Google Scholar 

  28. Leeper A, Hsiao K, Ciocarlie M, Sucan I, Salisbury K (2013) Methods for collision-free arm teleoperation in clutter using constraints from 3d sensor data. In: 2013 13th IEEE-RAS international conference on humanoid robots (Humanoids), pp 520–527

  29. Lentini G, Settimi A, Caporale D, Garabini M, Grioli G, Pallottino L, Catalano MG, Bicchi A (2019) Alter-ego: a mobile robot with a functionally anthropomorphic upper body designed for physical interaction. IEEE Robot Autom Magaz 26(4):94–107

    Article  Google Scholar 

  30. Lenz C, Behnke S (2022) Bimanual telemanipulation with force and haptic feedback trough an anthropomorphic avatar system. Robot Auton Syst 161:104338

    Article  Google Scholar 

  31. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22

    Article  MathSciNet  MATH  Google Scholar 

  32. Lii NY, Leidner D, Birkenkampf P, Pleintinger B, Bayer R, Krueger T (2017) Toward scalable intuitive telecommand of robots for space deployment with METERON SUPVIS Justin. In: The 14th symposium on advanced space technologies for robotics and automation (ASTRA). European Space Agency, 6 2017. [Online]. Available: https://elib.dlr.de/113125/

  33. Lim J, Lee I, Shim I, Jung H, Joe HM, Bae H, Sim O, Oh J, Jung T, Shin S, Joo K, Kim M, Lee K, Bok Y, Choi D-G, Cho B, Kim S, Heo J, Kim I, Lee J, Kwon IS, Oh J-H (2017) Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. J Field Robot 34(4):802–829

    Article  MATH  Google Scholar 

  34. Lin T-C, Krishnan AU, Li Z (2019) Physical fatigue analysis of assistive robot teleoperation via whole-body motion mapping. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). Macau, China, IEEE, pp 2240–2245. [Online]. Available: https://ieeexplore.ieee.org/document/8968544/

  35. Luo R, Wang C, Keil C, Nguyen D, Mayne H, Alt S, Schwarm E, Mendoza E, Padır T, Whitney JP (2023) Team Northeastern’s approach to ANA xprize avatar final testing: a holistic approach to telepresence and lessons learned. arXiv preprint arXiv:2303.04932, 3. [Online]. Available: http://arxiv.org/abs/2303.04932

  36. Luo Y, Wang J, Liang H-N, Luo S, Lim EG (2021) Monoscopic vs. Stereoscopic views and display types in the teleoperation of unmanned ground vehicles for object avoidance. In: 2021 30th IEEE international conference on robot & human interactive communication (RO-MAN), pp 418–425

  37. Marani G, Kim J, Yuh J, Chung WK (2002) A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators. In: Proceedings-IEEE international conference on robotics and automation, vol 2, pp 1973–1978

  38. Marques JMC, Naughton P, Zhu Y, Malhotra N, Hauser K (2022) Commodity telepresence with the AvaTRINA nursebot in the ANA avatar XPRIZE semifinals. In: RSS 2022 Workshop on “Towards robot avatars: perspectives on the ANA Avatar XPRIZE competition

  39. Martins H, Oakley I, Ventura R (2015) Design and evaluation of a head-mounted display for immersive 3D teleoperation of field robots. Robotica 33(10):2166–2185

    Article  MATH  Google Scholar 

  40. Mehrdad S, Liu F, Pham MT, Lelevé A, Atashzar SF (2021) Review of advanced medical telerobots. Appl Sci 11(1):209

    Article  MATH  Google Scholar 

  41. Muscolo GG, Marcheschi S, Fontana M, Bergamasco M (2021) Dynamics modeling of human-machine control interface for underwater teleoperation. Robotica 39(4):618–632

    Article  Google Scholar 

  42. Naughton P, Hauser K (2022) Structured action prediction for teleoperation in open worlds. IEEE Robot Autom Lett 7(2):3099–3105

    Article  MATH  Google Scholar 

  43. Nguyen V (2023) Increasing independence with stretch: a mobile robot enabling functional performance in daily activities

  44. Orlosky J, Theofilis K, Kiyokawa K, Nagai Y (2018) Effects of throughput delay on perception of robot teleoperation and head control precision in remote monitoring tasks. Presence Teleoperators Virtual Environ 27(2):226–241

    Article  Google Scholar 

  45. Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M, Tankovich V, Loop C, Cai Q, Chou PA, Mennicken S, Valentin J, Pradeep V, Wang S, Kang SB, Kohli P, Lutchyn Y, Keskin C, Izadi S (2016) Holoportation: virtual 3D teleportation in real-time. In: Proceedings of the 29th annual symposium on user interface software and technology, ser. UIST ’16. New York, NY, USA, Association for Computing Machinery, pp 741–754. [Online]. Available: https://doi.org/10.1145/2984511.2984517

  46. Park B, Jung J, Sim J, Kim S, Ahn J, Lim D, Kim D, Kim M, Park S, Sung E et al. (2022) Team SNU’S avatar system for teleoperation using humanoid robot: ana avatar xprize competition. In: RSS 2022 workshop on “towards robot avatars: perspectives on the ANA avatar XPRIZE competition

  47. Park S, Kim J, Lee H, Jo M, Gong D, Ju D, Kim S, Won D, Bae J (2023) Team UNIST at the \$10M ANA Avatar XPRIZE: core technologies, integration, and evaluation. In: 2nd workshop towards robot avatars, ICRA 2023, London. [Online]. Available: https://www.ais.uni-bonn.de/ICRA2023AvatarWS/contributions/ICRA_2023_Avatar_WS_SPark.pdf

  48. Pätzold B, Rochow A, Schreiber M, Memmesheimer R, Lenz C, Schwarz M, Behnke S (2023) Audio-based roughness sensing and tactile feedback for haptic perception in telepresence. arXiv preprint arXiv:2303.07186v1, [Online]. Available: https://arxiv.org/abs/2303.07186v1

  49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  50. Qian L, Deguet A, Kazanzides P (2018) ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery. Healthcare Technology Letters 5(5):194–200

    Article  Google Scholar 

  51. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY, et al. (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol 3, No 3.2. Kobe, Japan, p 5

  52. Renner RS, Steindecker E, MüLler M, Velichkovsky BM, Stelzer R, Pannasch S, Helmert JR (2015) The influence of the stereo base on blind and sighted reaches in a virtual environment. ACM Trans Appl Percept 12(2):1–18

    Article  Google Scholar 

  53. Rochow A, Schwarz M, Schreiber M, Behnke S (2022) VR facial animation for immersive telepresence avatars. In: 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS), Kyoto, Japan, pp 2167–2174

  54. Rosner B, Munoz A (1988) Autoregressive modelling for the analysis of longitudinal data with unequally spaced examinations. Stat Med 7(1–2):59–71

    Article  MATH  Google Scholar 

  55. Sarantakos S (2017) Social research. Bloomsbury Publishing, London

    MATH  Google Scholar 

  56. Schwarz M, Behnke S (2021) Low-latency immersive 6d televisualization with spherical rendering. In: 2020 IEEE-RAS 20th international conference on humanoid robots (Humanoids), pp 320–325. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9555797/

  57. Schwarz M, Beul M, Droeschel D, Klamt T, Lenz C, Pavlichenko D, Rodehutskors T, Schreiber M, Araslanov N, Ivanov I, Razlaw J, Schüller S, Schwarz D, Topalidou-Kyniazopoulou A, Behnke S (2018) DRC team NimbRo rescue: perception and control for centaur-like mobile manipulation robot momaro. In: Spenko M, Buerger S, Iagnemma K (eds) The DARPA robotics challenge finals: humanoid robots to the rescue. Springer International Publishing, Cham, pp 145–190. https://doi.org/10.1007/978-3-319-74666-1_5

    Chapter  Google Scholar 

  58. Schwarz M, Lenz C, Memmesheimer R, Pätzold B, Rochow A, Schreiber M, Behnke S (2023) Robust immersive telepresence and mobile telemanipulation: NimbRo wins ANA avatar XPRIZE finals. arXiv preprint arXiv:2303.03297v1, [Online]. Available: http://arxiv.org/abs/2303.03297

  59. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    Article  MathSciNet  MATH  Google Scholar 

  60. Shin S, Choi S (2018) Geometry-based haptic texture modeling and rendering using photometric stereo. In: IEEE haptics symposium (HAPTICS), pp 262–269

  61. Siarohin A, Lathuilière S, Tulyakov S, Ricci E, Sebe N (2019) First order motion model for image animation. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (Eds.) Advances in neural information processing systems, vol 32. Curran Associates, Inc. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf

  62. Stotko P, Krumpen S, Schwarz M, Lenz C, Behnke S, Klein R, Weinmann M (2019) AVR system for immersive teleoperation and live exploration with a mobile robot. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 11, pp 3630–3637

  63. Sánchez G, Latombe JC (2003) A Single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Siciliano B, Khatib O, Groen F, Jarvis RA, Zelinsky A (Eds.) Robotics research, Springer, Berlin, vol 6, pp 403–417

  64. Tachi S, Minamizawa K, Furukawa M, Fernando CL (2012) Telexistence-from 1980 to 2012. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, vol 10, pp 5440–5441. [Online]. Available: https://ieeexplore.ieee.org/document/6386296

  65. Tachi S, Inoue Y, Kato F (2020) TELESAR VI: telexistence surrogate anthropomorphic robot VI. Int J Humanoid Robot 17(05):2050019

    Article  Google Scholar 

  66. Takagi A, Yamazaki S, Saito Y, Taniguchi N (2000) Development of a stereo video see-through HMD for AR systems. In: Proceedings IEEE and ACM international symposium on augmented reality (ISAR 2000). Munich, Germany, IEEE, pp 68–77. [Online]. Available: http://ieeexplore.ieee.org/document/880925/

  67. Takeuchi K, Yamazaki Y, Yoshifuji K (2020) Avatar work: telework for disabled people unable to go outside by using avatar robots. In: Companion of the 2020 ACM/IEEE international conference on human-robot interaction, ser. HRI ’20. New York, NY, USA, Association for Computing Machinery, pp 53–60. [Online]. Available: https://doi.org/10.1145/3371382.3380737

  68. Toyota (2017) Toyota unveils third generation humanoid robot t-hr3. [Online]. Available: https://global.toyota/en/detail/19666346

  69. Van Erp JB, Sallaberry C, Brekelmans C, Dresscher D, Ter Haar F, Englebienne G, Van Bruggen J, De Greeff J, Pereira LFS, Toet A, et al. (2022) What comes after telepresence? Embodiment, social presence and transporting one’s functional and social self. In: 2022 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 2067–2072

  70. Vaz JC, Dave A, Kassai N, Kosanovic N, Oh PY (2022) Immersive auditory-visual real-time avatar system of ana avatar xprize finalist avatar-hubo. In: 2022 IEEE international conference on advanced robotics and its social impacts (ARSO). IEEE, pp 1–6

  71. Wang A, Ramos J, Mayo J, Ubellacker W, Cheung J, Kim S (2015) The hermes humanoid system: a platform for full-body teleoperation with balance feedback. In: 2015 IEEE-RAS 15th international conference on humanoid robots (Humanoids), pp 730–737

  72. Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ 7(3):225–240

    Article  MATH  Google Scholar 

  73. Yang C, Zhang J, Chen Y, Dong Y, Zhang Y (2008) A review of exoskeleton-type systems and their key technologies. Proc Inst Mech Eng C J Mech Eng Sci 222(8):1599–1612

    Article  MATH  Google Scholar 

  74. Zhu Y, Smith A, Hauser K (2022) Automated heart and lung auscultation in robotic physical examinations. IEEE Robot Autom Lett 7(2):4204–4211

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank all the people who provided constructive feedback on the design of AVATRINA throughout the years. We would also like to thank Siqi Lai for helping with figure editing. Finally, we thank Jack Yu, Vicky Ma, and Zoey Spengler for helping with AVATRINA’s aesthetic design.

Funding

This work was partially supported by the National Science Foundation under Grant #2025782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Marcos Correia Marques.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the University of Illinois at Urbana-Champaign Institutional Review Board (#24169). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Elbow Heuristic Details

Fig. 27
figure 27

Concept of the bias configuration heuristic. Based on the commanded motion of the end effector, the elbow pose is controlled to appear more human-like and reduce the rate of tracking failures due to joint limits and self-collision. (Color figure online)

Fig. 28
figure 28

A sample of the performance of the facial reconstruction pipeline on one of the author’s under varied facial expressions, with the original image on the left paired with the network’s output on the right

Let the 3D rotation and translation vectors \(r = \begin{bmatrix}r_x&r_y&r_z\end{bmatrix}^T\) and \(t = \begin{bmatrix}t_x&t_y&t_z\end{bmatrix}^T\) represent the commanded SE(3) transform \(T_{ee}\) of a hand. The shoulder angle heuristic for the left and right arms are given by:

$$\begin{aligned} \begin{aligned} q_{\text {shoulder, right}}&= -(\max (k_{\text {angle}} (r_y + r_z), 0) \\&\qquad + k_z(t_z - z_0))\\ q_{\text {shoulder, left}}&= +(\max (k_{\text {angle}} (r_y - r_z), 0) \\&\qquad + k_z(t_z - z_0))\\ \end{aligned} \end{aligned}$$
(15)

where \(k_{\text {angle}}, k_z\), and \(z_0\) are positive tunable constants. Figure 27 shows the motion of the elbow when the operator turns their wrist inwards: positive z axis rotation corresponds to a negative \(q_{\text {shoulder}}\) for the right arm, which forces the elbow outwards. Turning the wrist downwards and lifting the hand upwards also force the elbow to turn outwards.

B Qualitative Evaluation of Facial Reconstruction Pipeline

Figure 28 illustrates the performance of the proposed facial reconstruction pipeline. Examples b) through f) show that under relatively tame facial expressions common during communication, the network’s output is mostly plausible and can convey some of the expressions of the operator to their remote counterparts, despite having trouble with conveying precise mouth movements or proper rendering of the operator’s teeth (unseen in the source image). Examples f) through p) show some of the failure cases of this pipeline: Facial expressions far outside of its training distribution, such as i) and j), as well as any expressions that involve parts of the face not captured by facial landmarks (such as the tongue or cheeks), like m) through p) result in outputs that don’t necessarily capture the operator’s intent. Further, gaze direction is entirely dependent on the neutrally blinking video recording, which can sometimes result in awkward staring or stargazing, such as in example f).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia Marques, J.M., Naughton, P., Peng, JC. et al. Immersive Commodity Telepresence with the AVATRINA Robot Avatar. Int J of Soc Robotics (2024). https://doi.org/10.1007/s12369-023-01090-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12369-023-01090-1

Keywords

Navigation