International Journal of Social Robotics

, Volume 9, Issue 1, pp 141–161 | Cite as

Interacting with Non-anthropomorphic Robotic Artworks and Interpreting Their Behaviour

  • Florent Levillain
  • Elisabetta Zibetti
  • Sébastien Lefort


Art installations involving robotic artifacts provide an opportunity to examine human relationships with robots designed solely for the purpose of sustaining evocative behaviours. In an attempt to determine the behavioural characteristics and personality traits attributed by a human to a robotic artifact, we investigated an audience’s experience of an installation that presented three robotic artifacts moving autonomously in an exhibition space. In order to describe the audience’s experience, we present two studies that revealed the psychological attributions spontaneously produced from observing the robots, and visitors’ physical exploration patterns inside the exhibition. We propose a psychological profile for the artwork, and a tentative organization for the attribution process. Using a cluster analysis performed on visitors’ trajectories inside the installation, we highlight four different exploration and interaction heuristics characterized by patterns of approach or withdrawal, passive observation and exploration.


Human-robot interaction Behaviour Non-anthropomorphic robot Agency Contemporary art 



We would like to thank Céleste Boursier-Mougenot and the Abattoirs team for kindly letting us investigate the installation. This study was made possible with the help of Naoko Abe. The research was developed as part of a collaboration with the ENSADLAB Reflective Interaction team (directed by Samuel Bianchini), The Centre Georges Pompidou and the university Paris 8, inside the “Behaviors of Things” research program (program manager: Emanuele Quinz) supported, through the Labex Arts-H2H, by Investissements d’Avenir (ANR-10-LABX-80-01) of the French National Research Agency (ANR). We are especially grateful to Emanuele Quinz and Samuel Bianchini for introducing us to the domain of behavioral artworks in contemporary art, and for giving us the opportunity to develop the study proposed in this article.


  1. 1.
    Kamewari K, Kato M, Kanda T, Ishiguro H, Hiraki K (2005) Six-and-a-half-month-old children positively attribute goals to human action and to humanoid-robot motion. Cognitive Dev 20:303–320. doi: 10.1016/j.cogdev.2005.04.004 CrossRefGoogle Scholar
  2. 2.
    Bartneck C, Kanda T, Mubin O, Mahmud Al A (2009) Does the design of a robot influence its animacy and perceived intelligence? Int J Soc Robot 1(2):195–204. doi: 10.1007/s12369-009-0013-7 CrossRefGoogle Scholar
  3. 3.
    Sciutti A, Bisio A, Nori F, Metta G, Fadiga L, Sandini G (2013) Robots can be perceived as goal-oriented agents. Interact Stud 14(3):329–350. doi: 10.1075/is.14.3.02sci Google Scholar
  4. 4.
    Young JE, Sung J, Voida A, Sharlin E, Igarashi T, Christensen HI, Grinter RE (2011) Evaluating human-robot interaction. Int J Soc Robot 3(1):53–67. doi: 10.1007/s12369-010-0081-8 CrossRefGoogle Scholar
  5. 5.
    Nomura T, Kanda T, Suzuki T (2006) experimental investigation into influence of negative attitudes toward robots on human-robot interaction. Ai Soc 20(2):138–150CrossRefGoogle Scholar
  6. 6.
    Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi: 10.1007/s12369-008-0001-3 CrossRefGoogle Scholar
  7. 7.
    de Graaf B (2013) Species of illumination.
  8. 8.
    Kamide H, Takubo T, Ohara K, Mae Y, Arai T (2013) Impressions of humanoids: the development of a measure for evaluating a humanoid. Int J Soc Robot 6(1):33–44. doi: 10.1007/s12369-013-0187-x CrossRefGoogle Scholar
  9. 9.
    Forlizzi J (2007) How robotic products become social products: an ethnographic study of cleaning in the home. In: Proceedings of the 2nd ACM/IEEE international conference on human-robot interaction 2007, pp 129–136Google Scholar
  10. 10.
    Sung J, Guo L, Grinter RE, Christensen HI (2007) “My Roomba is Rambo”: intimate home appliances. In: Proceedings of the 9th international conference on Ubiquitous computing, Springer, Berlin, pp 145–162Google Scholar
  11. 11.
    Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable domestic robots: applying insights from social psychology. Int J Soc Robot 1(1):95–108. doi: 10.1007/s12369-008-0006-y CrossRefGoogle Scholar
  12. 12.
    Hendriks B, Meerbeek B, Boess S, Pauws S, Sonneveld M (2011) Robot vacuum cleaner personality and behavior. Int J Soc Robot 3(2):187–195. doi: 10.1007/s12369-010-0084-5 CrossRefGoogle Scholar
  13. 13.
    Hoffman G, Ju W (2014) Designing robots with movement in mind. J Hum Robot Interact 3(1):89–122. doi: 10.5898/JHRI.3.1.Hoffman CrossRefGoogle Scholar
  14. 14.
    Joosse M, Sardar A, Lohse M, Evers V (2013) BEHAVE-II: The revised set of measures to assess users’ attitudinal and behavioral responses to a social robot. Int J Soc Robot 5(3):379–388. doi: 10.1007/s12369-013-0191-1 CrossRefGoogle Scholar
  15. 15.
    Smart WD, Pileggi A, Takayama L (2010) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering research.
  16. 16.
    Yan H, Ang MH, Poo AN (2014) A survey on perception methods for human-robot interaction in social robots. Int J Soc Robot 6(1):85–119. doi: 10.1007/s12369-013-0199-6 CrossRefGoogle Scholar
  17. 17.
    Bartneck C, Forlizzi J (2004) A design-centred framework for social human–robot interaction. In:13th IEEE international workshop on robot and human interactive communication, pp 591–594Google Scholar
  18. 18.
    Breazeal C (2002) Designing sociable robots. MIT Press, CambridgezbMATHGoogle Scholar
  19. 19.
    Breazeal C, Brooks A, Gray J, Hancher M, McBean J, Stiehl D, Strickon J (2003) Interactive robot theatre. Commun ACM 46(7):76–85CrossRefGoogle Scholar
  20. 20.
    Quinz E, Dautrey J (eds) (2014) Strange Design, Du design des objets aux design des comportements. Villeurbanne: it: editionsGoogle Scholar
  21. 21.
    Bianchini S, Bourganel R, Quinz E, Levillain F, Zibetti E (2015) (Mis)Behavioral objects. Empowerment of users vs. empowerment of objects. In: Bihanic D (ed) Empowering users through design. Springer, Berlin, pp 129–152CrossRefGoogle Scholar
  22. 22.
    Cornock S, Edmonds E (1973) The creative process where the artist is amplified or superseded by the computer. Leonardo 16:11–16CrossRefGoogle Scholar
  23. 23.
    Rutherford MD, Kuhlmeier VA (2013) Section introduction: The perception of animacy and intentional behavior. In: Rutherford MD, Kuhlmeier VA (eds) Social perception. MIT Press, Cambridge, MACrossRefGoogle Scholar
  24. 24.
    Breazeal C (2003) Toward sociable robots. Robot Auton Syst 42(3–4):167–175. doi: 10.1016/S0921-8890(02)00373-1 zbMATHCrossRefGoogle Scholar
  25. 25.
    Braitenberg V (1984) Vehicles: experiments in synthetic psychology. MIT Press, Cambridge, MAGoogle Scholar
  26. 26.
    Dunne A, Raby F (2007) Critical design FAQ.
  27. 27.
    Chambers J (2010) Artificial defence mechanisms.
  28. 28.
    St Onge D, Reeves N (2010). Human interaction with flying cubic automata. In: Smart WD, Pileggi A, Takayama L (eds) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering research.
  29. 29.
    de Graaf MM, Allouch SB (2013) Exploring influencing variables for the acceptance of social robots. Robot Auton Syst 61(12):1476–1486. doi: 10.1016/j.robot.2013.07.007 CrossRefGoogle Scholar
  30. 30.
    Johansson G (1973) Visual perception of biological motion and a model for its analysis. Atten Percept Psychophys 14(2):201–211CrossRefGoogle Scholar
  31. 31.
    Heider F, Simmel (1944) Social perception and phenomenal causality. Am J Psychol 57:244–249CrossRefGoogle Scholar
  32. 32.
    Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4(8):299–309CrossRefGoogle Scholar
  33. 33.
    Heider F (1958) The psychology of interpersonal relations. Wiley, New YorkCrossRefGoogle Scholar
  34. 34.
    Dasser V, Ulbaek I, Premack D (1989) The perception of intention. Science 243(4889):365–367CrossRefGoogle Scholar
  35. 35.
    Bassili JN (1976) Temporal and spatial contingencies in the perception of social events. J Pers Soc Psychol 33(6):680–685CrossRefGoogle Scholar
  36. 36.
    Tremoulet PD, Feldman J (2000) Perception of animacy from the motion of a single object. Perception 29(8):943–951. doi: 10.1068/p3101 CrossRefGoogle Scholar
  37. 37.
    Dittrich W, Lea S (1994) Visual perception of intentional motion. Perception 23:253–268CrossRefGoogle Scholar
  38. 38.
    Gao T, Newman GE, Scholl BJ (2009) The psychophysics of chasing: a case study in the perception of animacy. Cogn Psychol 59(2):154–179. doi: 10.1016/j.cogpsych.2009.03.001 CrossRefGoogle Scholar
  39. 39.
    Meerbeek B, Saerbeck M, Bartneck C (2009) Iterative design process for robots with personality. In: Dautenhahn K. (ed) AISB2009 Symposium on new frontiers in human-robot interaction, pp 94–101Google Scholar
  40. 40.
    Fukuda H, Ueda K (2010) Interaction with a moving object affects one’s perception of its animacy. Int J Soc Robot 2(2):187–193. doi: 10.1007/s12369-010-0045-z CrossRefGoogle Scholar
  41. 41.
    Kahn PH Jr, Friedman B, Perez-Granados DR, Freier NG (2006) Robotic pets in the lives of preschool children. Interact Stud 7(3):405–436. doi: 10.1145/985921.986087 CrossRefGoogle Scholar
  42. 42.
    Okita SY, Schwartz DL (2006) Young children’s understanding of animacy and entertainment robots. Int J Humanoid Robot 03(03):393–412. doi: 10.1142/s0219843606000795 CrossRefGoogle Scholar
  43. 43.
    Haring KS, Matsumoto Y, Watanabe K (2013) How do people perceive and trust a lifelike robot. In: Proceedings of the world congress on engineering and computer science 2013 (WCECS 2013), Vol I,Google Scholar
  44. 44.
    Höök K, Sengers P, Andersson G (2003) Sense and sensibility: evaluation and interactive art. In: Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, pp 241–248Google Scholar
  45. 45.
    Costello B, Edmonds, E (2007) A study in play, pleasure and interaction design. In: Proceedings of the 2007 conference on Designing pleasurable products and interfaces. ACM, pp 76-91Google Scholar
  46. 46.
    Bilda Z, Muller L, Edmonds E (2009) Artist, evaluator and curator: three viewpoints on interactive art, evaluation and audience experience. Digit Creat 20(3):141–151. doi: 10.1080/14626260903083579 CrossRefGoogle Scholar
  47. 47.
    Loke L, Robertson T (2009) Design representations of moving bodies for interactive, motion-sensing spaces. Int J Hum Comput Stud 67:394–410. doi: 10.1016/j.ijhcs.2008.11.003 CrossRefGoogle Scholar
  48. 48.
    Boehner K, Thom-Santelli J, Zoss A, Gay G, Hall JS, Barrett T (2005) Imprints of place: creative expressions of the museum experience. In: CHI’05 extended abstracts on Human factors in computing systems. ACM, pp 1220–1223Google Scholar
  49. 49.
    Bilda Z, Candy L, Edmonds E (2008) Designing for creative engagement. Des Stud 29(6):525–540. doi: 10.1016/j.destud.2008.07.009 CrossRefGoogle Scholar
  50. 50.
    Edmonds E, Muller L, Connell M (2006) On creative engagement. Vis Commun 5(3):307–322. doi: 10.1177/1470357206068461 CrossRefGoogle Scholar
  51. 51.
    Candy L, Amitani S, Bilda Z (2006) Practice-led strategies for interactive art research. CoDesign 3:209–223CrossRefGoogle Scholar
  52. 52.
    Tractinsky N, Katz AS, Ikar D (2000) What is beautiful is usable. Interact Comput 13(2):127–145. doi: 10.1016/S0953-5438(00)00031-X CrossRefGoogle Scholar
  53. 53.
    Hassenzahl M (2004) The interplay of beauty, goodness, and usability in interactive products. Hum Comput Interact 19(4):319–349. doi: 10.1207/s15327051hci1904_2 CrossRefGoogle Scholar
  54. 54.
    Fernaeus Y, West U (2010) Disturbing, Fragile, Inexorable: Human-Robot Interactions from a Perspective of Artistic Practice. In: Smart WD, Pileggi A, Takayama L (eds) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering researchGoogle Scholar
  55. 55.
    Michalowski MP, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: 9th IEEE international workshop on advanced motion control, 2006. IEEE, Piscataway, pp 762-767Google Scholar
  56. 56.
    Walters ML, Dautenhahn K, Woods SN, Koay KL, Te Boekhorst R, Lee D (2006) Exploratory studies on social spaces between humans and a mechanical-looking robot. Connect Sci 18(4):429–439. doi: 10.1080/09540090600879513 CrossRefGoogle Scholar
  57. 57.
    Sidner CL, Lee C, Kidd CD, Lesh N, Rich C (2005) Explorations in engagement for humans and robots. Artif Intel 166(1–2):140–164. doi: 10.1016/j.artint.2005.03.005 CrossRefGoogle Scholar
  58. 58.
    Hall ET (1966) The hidden dimension. DoubledayGoogle Scholar
  59. 59.
    Hall ET (1963) A system for the notation of proxemic behavior. Am Anthropol 65(5):1003–1026CrossRefGoogle Scholar
  60. 60.
    Walters ML, Dautenhahn K, Koay KL, Kaouri C, Boekhorst RT, Nehaniv C, Werry I, Lee D (2005) Close encounters: Spatial distances between people and a robot of mechanistic appearance. In: 5th IEEE-RAS international conference on humanoid robots, 2005, pp. 450–455Google Scholar
  61. 61.
    Glas DF, Kamei K, Kanda T, Miyashita T, Hagita N (2015) Human-robot interaction in public and smart spaces. In: Mohammed S, Moreno JC, Kong K, Amirat Y (eds) Intelligent assistive robots. Springer, New York, pp 235–273Google Scholar
  62. 62.
    Oyama T, Yoshida E, Kobayashi Y, Kuno Y (2013) Tracking visitors with sensor poles for robot’s museum guide tour. In: 6th international conference on human system interaction (HSI). IEEE, Piscataway, pp 645–650Google Scholar
  63. 63.
    Rashed MG, Suzuki R, Lam A, Kobayashi Y, Kuno Y (2015) Toward museum guide robots proactively initiating interaction with humans. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts. ACM, pp. 1–2Google Scholar
  64. 64.
    Vom Lehn D, Heath C, Hindmarsh J (2001) Exhibiting interaction: conduct and collaboration in museums and galleries. Symb Interact 24(2):189–216. doi: 10.1525/si.2001.24.2.189 CrossRefGoogle Scholar
  65. 65.
    Costello B, Muller L, Amitani S, Edmonds E (2000) Understanding the experience of interactive art: iamascope in beta_space. In: Pisan Y (ed) Australasian conference on interactive entertainment, Creativity and Cognition Studio Press, pp 49–56Google Scholar
  66. 66.
    Leslie AM (1994) ToMM, ToBy and Agency. In: Hirschfeld L, Gelman SA (eds) Mapping the mind: domain specificity in cognition and culture. cambridge University Press, New YorkGoogle Scholar
  67. 67.
    Tomasello M (2010) Origins of human communication. MIT Press, CambridgeGoogle Scholar
  68. 68.
    Premack D (1990) The infant’s theory of self-propelled objects. Cognition 36(1):1–16CrossRefGoogle Scholar
  69. 69.
    Michotte A (1963) The perception of causality. Basic Books, New YorkGoogle Scholar
  70. 70.
    Kotovsky L, Baillargeon R (2000) Reasoning about collisions involving inert objects in 7.5-month-old infants. Dev Sci 3(3):344–359CrossRefGoogle Scholar
  71. 71.
    Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA, Singh M, von der Heydt R (2012) A century of Gestalt psychology in visual perception I. Perceptual grouping and figure-ground organization. Psychol Bull 138(6):1172–1217. doi: 10.1037/a0029333 CrossRefGoogle Scholar
  72. 72.
    Gergely G, Nadasdy Z, Csibra G, Bíró S (1995) Taking the intentional stance at 12 months of age. Cognition 56:165–193. doi: 10.1016/0010-0277(95)00661-H CrossRefGoogle Scholar
  73. 73.
    Luo Y, Baillargeon R (2005) Can a self-propelled box have a goal? Psychological reasoning in 5-month-old infants. Psychol Sci 16:601–608. doi: 10.1111/j.1467-9280.2005.01582.x CrossRefGoogle Scholar
  74. 74.
    Schultz J, Bülthoff H (2013) Parametric animacy percept evoked by a single moving dot mimicking natural stimuli. J Vis 13:1–19. doi: 10.1167/13.4.15 CrossRefGoogle Scholar
  75. 75.
    Bertenthal BI, Proffitt DR, Spentner N, Thomans A (1985) The development of infant sensitivity to biomechanical motions. Child Dev 56:531–543. doi: 10.2307/1129742 CrossRefGoogle Scholar
  76. 76.
    Arterberry ME, Bornstein MH (2001) Three-month-old infants’ categorization of animals and vehicles based on static and dynamic attributes. J Exp Child Psychol 80:333–346. doi: 10.1006/jecp.2001.2637 CrossRefGoogle Scholar
  77. 77.
    Mareschal D, Johnson MH (2003) The “what” and “where” of object representations in infancy. Cognition 88:259–276. doi: 10.1016/S0010-0277(03)00039-8 CrossRefGoogle Scholar
  78. 78.
    Pauen S, Träuble B (2009) How 7-month-olds interpret ambiguous motion events: category-specific reasoning in infancy. Cogn Psychol 59:275–295. doi: 10.1016/j.cogpsych.2009.06.001 CrossRefGoogle Scholar
  79. 79.
    Saxe R, Tzelnic T, Carey S (2007) Knowing who dunnit: infants identify the causal agent in an unseen causal interaction. Dev Psychol 43(1):149–158. doi: 10.1037/0012-1649.43.1.149 CrossRefGoogle Scholar
  80. 80.
    Viviani P, Stucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum 18(3):603–623CrossRefGoogle Scholar
  81. 81.
    Rauterberg M, Dtwyler M, Sperisen M (1995) From competition to collaboration through a shared social space. In: Blumental B, Gornostaev J, Unger C (eds) Proceedings of the east-west international conference on human-computer interaction (EWHCI95), vol. II, pp 94–101Google Scholar
  82. 82.
    Hall ET (1968) Proxemics. Curr Anthropol 9:83–108CrossRefGoogle Scholar
  83. 83.
    Mutlu B, Forlizzi J (2008) Robots in organizations: the role of workflow, social, and environmental factors in human-robot interaction. In: Proceedings of the 3rd ACM/IEEE international conference on human-robot interaction (Amsterdam, The Netherlands, March 12—11, 2008). HRI ‘08. ACM, New York, pp 287–294. doi: 10.1145/1349822.1349860
  84. 84.
    Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human–robot interaction. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 5495–5502Google Scholar
  85. 85.
    Syrdal DS, Dautenhahn K, Walters ML, Koay KL (2008) Sharing spaces with robots in a home scenario-anthropomorphic attributions and their effect on proxemic expectations and evaluations in a live HRI trial. In: Proceedings of the AAAI Fall 2008 symposium “AI in Eldercare: new solutions to old problems”, pp 7–9Google Scholar
  86. 86.
    Syrdal DS, Walters ML, Koay KL, Dautenhahn K (2008) The role of autonomy and interaction type on spatial comfort in an HRI scenario. In: Robotic helpers: user interaction, interfaces and companions in assistive and therapy robotics. Full-day workshop at the third ACM/IEEE human–robot interaction conference (HRI08). University of HertfordshireGoogle Scholar
  87. 87.
    Torta E, Cuijpers RH, Juola JF (2013) Design of a parametric model of personal space for robotic social navigation. Int J Soc Robot 5(3):357–365. doi: 10.1007/s12369-013-0188-9 CrossRefGoogle Scholar
  88. 88.
    de Graaf MMA, Allouch SB (2016) The influence of prior expectations of a robot’s lifelikeness on users’ intentions to treat a zoomorphic robot as a companion. Int J of Soc Robot 1(16): doi: 10.1007/s12369-016-0340-4
  89. 89.
    Kidd CD, Breazeal C (2008) Robots at home: understanding long-term human–robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems. IROS 2008, pp 3230–3235Google Scholar
  90. 90.
    Todd PM, Gigerenzer G (2000) Précis of simple heuristics that make us smart. Behav Brain Sci 23(05):727–741CrossRefGoogle Scholar
  91. 91.
    Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: Fuzzy Systems conference proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International, Vol. 3. IEEE, Piscataway, pp 1281–1286Google Scholar
  92. 92.
    Thorndike RL (1953) Who belongs in the family? Psychometrika 18(4):267–276CrossRefGoogle Scholar
  93. 93.
    Syrdal DS, Dautenhahn K, Woods S, Walters ML, Koay KL (2006). Doing the right thing wrong: personality and tolerance to uncomfortable robot approaches. In: Proceedings of the IEEE international symposium on robot and human interactive communication (ROMAN), 2006, pp 183–188Google Scholar
  94. 94.
    Fink J, Bauwens V, Kaplan F, Dillenbourg P (2013) Living with a vacuum cleaning robot. Int J Soc Robot 5(3):389–408. doi: 10.1007/s12369-013-0190-2 CrossRefGoogle Scholar
  95. 95.
    Syrdal DS, Dautenhahn K, Koay KL, Walters ML, Ho WC (2013) Sharing spaces, sharing lives—the impact of robot mobility on user perception of a home companion robot. In: Proceedings of the 5th international conference on social robotics, vol 8239. Springer, New York, pp 321–330Google Scholar
  96. 96.
    Gaudiello I, Lefort S, Zibetti E (2015) The ontological and functional status of robots: How firm our representations are? Comput Hum Behav 50(C):259–273. doi: 10.1016/j.chb.2015.03.060 CrossRefGoogle Scholar
  97. 97.
    Kahn PH Jr, Severson RL, Ruckert JH (2009) The human relation with nature and technological nature. Curr Dir Psychol Sci 18(1):37–42. doi: 10.1111/j.1467-8721.2009.01602.x CrossRefGoogle Scholar
  98. 98.
    Jipson J, Gelman S (2007) Robots and rodents: Children’s inferences about living and nonliving kinds. Child Dev 78:1675–1688CrossRefGoogle Scholar
  99. 99.
    Turkle S (2011) Alone together Why we expect more from technology and less from each other. Basic Books, New YorkGoogle Scholar
  100. 100.
    Sabelli AM, Kanda T (2015) Robovie as a Mascot: A qualitative study for long-term presence of robots in a shopping mall. Int J Soc Robot 8(2):211–221. doi: 10.1007/s12369-015-0332-9 CrossRefGoogle Scholar
  101. 101.
    Alvarez-Santos V, Canedo-Rodriguez A, Iglesias R, Pardo XM, Regueiro CV, Fernandez-Delgado M (2015) Route learning and reproduction in a tour-guide robot. Robot Auton Syst 63:206–213. doi: 10.1111/j.1467-8624.2007.01095.x CrossRefGoogle Scholar
  102. 102.
    Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Auton Syst 61(12):1726–1743. doi: 10.1016/j.robot.2013.05.007 CrossRefGoogle Scholar
  103. 103.
    Rios-Martinez J, Spalanzani A, Laugier C (2014) From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 7(2):137–153. doi: 10.1007/s12369-014-0251-1 CrossRefGoogle Scholar
  104. 104.
    Carton D, Olszowy W, Wollherr D (2016) Measuring the effectiveness of readability for mobile robot locomotion. Int J Soc Robot 1–21. doi: 10.1007/s12369-016-0358-7
  105. 105.
    Turnwald A, Althoff D, Wollherr D, Buss M (2016) Understanding human avoidance behavior: interaction-aware decision making based on game theory. Int J Soc Robot 8(2):331–351. doi: 10.1007/s12369-016-0342-2 CrossRefGoogle Scholar
  106. 106.
    Duffy BR (2003) Anthropomorphism and the social robot. Robot Auton Syst 42(3–4):177–190. doi: 10.1016/s0921-8890(02)00374-3 zbMATHCrossRefGoogle Scholar
  107. 107.
    Nomura T, Suzuki T, Kanda T, Han J, Shin N, Burke J, Kata K (2008) What people assume about humanoid and animal-type robots: cross-cultural analysis between Japan, Korea, and the United States. Int J Hum Robot 5(1):25–46. doi: 10.1142/s0219843608001297 CrossRefGoogle Scholar
  108. 108.
    Mori M (1970) The uncanny valley. Energy 7(4):33–35. doi: 10.1007/s12369-016-0342-2 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Cognition Humaine & Artificielle (CHART EA 4004)Univ. Paris 8Saint Denis - Cedex 02France
  2. 2.LUTIN Living Lab - FvED 4246, Cité des Sciences et de l’IndustrieParisFrance
  3. 3.LIP6 UMR 7606, UPMC Univ Paris 06CNRSParisFrance

Personalised recommendations