Skip to main content
Log in

From Proxemics Theory to Socially-Aware Navigation: A Survey

  • Survey
  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In the context of a growing interest in modelling human behavior to increase the robots’ social abilities, this article presents a survey related to socially-aware robot navigation. It presents a review from sociological concepts to social robotics and human-aware navigation. Social cues, signals and proxemics are discussed. Socially aware behavior in terms of navigation is tackled also. Finally, recent robotic experiments focusing on the way social conventions and robotics must be linked is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Aiello JR (1977) A further look at equilibrium theory: visual interaction as a function of interpersonal distance. Environ Psychol Nonverbal Behav 1:122–140

    Article  MathSciNet  Google Scholar 

  2. Aiello JR (1987) Human spatial behavior. In: Stokols D, Altman I (eds) Handbook of environmental psychology. Wiley, New York, pp 359–504

    Google Scholar 

  3. Alili S, Alami R, Montreuil V (2009) A task planner for an autonomous social robot. In: Asama H, Kurokawa H, Ota J, Sekiyama K (eds) Distributed autonomous robotic systems 8. Springer, Berlin, pp 335–344

    Chapter  Google Scholar 

  4. Althaus P, Ishiguro H, Kanda T, Miyashita T, Christensen H (2004) Navigation for human-robot interaction tasks, vol 2. pp 1894–1900

  5. Argyle M, Dean J (1965) Eye-contact, distance and affiliation. Sociometry 28(3):289–304

    Article  Google Scholar 

  6. Arkin RC (1998) Behavior-based robotics, 1st edn. MIT Press, Cambridge

    Google Scholar 

  7. Bailenson JN, Blascovich J, Beall AC, Loomis JM (2001) Equilibrium theory revisited: mutual gaze and personal space in virtual environments. Presence Teleoperators Virtual Environ 10(6):583–598

    Article  Google Scholar 

  8. Bailenson JN, Blascovich J, Beall AC, Loomis JM (2003) Interpersonal distance in immersive virtual environments. Pers Soc Psychol Bull 29:819–833

    Article  Google Scholar 

  9. Bar-Haim Y, Aviezer O, Berson Y, Sagi A (2002) Attachment in infancy and personal space regulation in early adolescence. Attach Hum Dev 4(1):68–83

    Article  Google Scholar 

  10. Barraquand R, Crowley JL (2008) Learning polite behavior with situation models. In: Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction, ACM, pp 209–216

  11. Bartneck C, Forlizzi J (2004) A design-centred framework for social human-robot interaction. In: IEEE International workshop on robot and human interactive communication., pp 591–594

  12. Bhatt M, Dylla F (2009) A qualitative model of dynamic scene analysis and interpretation in ambient intelligence systems. Int J Robot Autom 24(3):235

    Google Scholar 

  13. Borkowski A, Siemiatkowska B, Szklarski J (2010) Towards semantic navigation in mobile robotics. In: Engels G, Lewerentz C, Schäfer W, Schürr A, Westfechtel B (eds) Graph transformations and model-driven engineering, lecture notes in computer science, vol 5765. Springer, Berlin, pp 719–748

    Chapter  Google Scholar 

  14. Butler JT, Agah A (2001) Psychological effects of behavior patterns of a mobile personal robot. Auton Robot 10(2):185– 202

  15. Carton D, Turnwald A, Wollherr D, Buss M (2012) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. In: 13th international symposium on experimental robotics

  16. Chung SY, Huang HP (2010) A mobile robot that understands pedestrian spatial behaviors. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5861–5866

  17. Ciolek M, Kendon A (1980) Environment and the spatial arrangement of conversational encounters. Sociol Inq 50:237–271

    Article  Google Scholar 

  18. Cristani M, Paggetti G, Vinciarelli A, Bazzani L, Menegaz G, Murino V (2011) Towards computational proxemics: inferring social relations from interpersonal distances. In: 3rd IEEE international conference on social computing, pp 290–297

  19. Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL, Sisbot A, Alami R, Siméon T (2006) How may i serve you?: a robot companion approaching a seated person in a helping context. In: 1st ACM SIGCHI/SIGART conference on human-robot interaction, pp 172–179

  20. Duffy BR (2001) Towards social intelligence in autonomous robotics: a review. In: Robotics, distance learning and intelligent communication systems, pp 1–6

  21. Efran MG, Cheyne JA (1973) Shared space: the cooperative control of spatial areas by two interacting individuals. Can J Behav Sci 5:201–210

    Article  Google Scholar 

  22. Fulgenzi C, Spalanzani A, Laugier C (2009) Probabilistic motion planning among moving obstacles following typical motion patterns. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4027–4033

  23. Ge SS (2007) Social robotics: integrating advances in engineering and computer science. In: 4th annual international conference organized by Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology (ECTI) Association

  24. Ge W, Collins R, Ruback B (2009) Automatically detecting the small group structure of a crowd. In: Workshop on applications of computer vision, pp 1–8

  25. Gérin-Lajoie M, Richards CL, Fung J, McFadyen BJ (2008) Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 27(2):239– 247

  26. Gharpure C, Kulyukin V (2008) Robot-assisted shopping for the blind: issues in spatial cognition and product selection. Intell Serv Robot 1:237–251

    Article  Google Scholar 

  27. Gifford R (1983) The experience of personal space: perception of interpersonal distance. J Nonverbal Behav 7(3):170–178

    Article  Google Scholar 

  28. Gockley R, Forlizzi J, Simmons R (2007) Natural person following behavior for social robots. Hum Robot Interact

  29. Goffman E (1963) Behavior in public places. Free Press, New York

    Google Scholar 

  30. Greenberg CI, Strube MJ, Myers RA (1980) A multitrait-multimethod investigation of interpersonal distance. J Nonverbal Behav 5:104–114

    Article  Google Scholar 

  31. Greenberg S, Marquardt N, Ballendat T, Diaz-Marino R, Wang M (2011) Proxemic interactions: the new ubicomp? Interactions 18(1):42–50

    Article  Google Scholar 

  32. Groh G, Lehmann A, Reimers J, Friess M, Schwarz L (2010) Detecting social situations from interaction geometry. In: IEEE second international conference on social computing, pp 1–8

  33. Hall ET (1966) The hidden dimension: man’s use of space in public and private. The Bodley Head Ltd, London

    Google Scholar 

  34. Hansen ST, Svenstrup M, Andersen HJ, Bak T (2009) Adaptive human aware navigation based on motion pattern analysis. The 18th IEEE international symposium on robot and human interactive communication

  35. Hayashi K, Shiomi M, Kanda T, Hagita N (2011) Friendly patrolling: a model of natural encounters. In: Robotics: science and systems

  36. Hayduk L (1981a) The permeability of personal space. Can J Behav Sci 13:274–287

    Article  Google Scholar 

  37. Hayduk L (1981b) The shape of personal space: an experimental investigation. Can J Behav Sci 13:87–93

    Article  Google Scholar 

  38. Hayduk L (1994) Personal space: understanding the simplex model. J Nonverbal Behav 18:245–260. doi:10.1007/BF02170028

    Article  Google Scholar 

  39. Hayduk LA (1978) Personal space: an evaluative and orienting overview. Psychol Bull 85:117–134

    Article  Google Scholar 

  40. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev 51:4282–4286

    Google Scholar 

  41. Higuchi T, Imanaka K, Patla AE (2006) Action-oriented representation of peripersonal and extrapersonal space: insights from manual and locomotor actions1. Jpn Psychol Res 48(3):126–140

    Article  Google Scholar 

  42. Hogan K, Stubbs R (2003) Can’t get through: eight barriers to communication. Pelican Publishing, Grenta

    Google Scholar 

  43. Huettenrauch H, Eklundh K, Green A, Topp E (2006) Investigating spatial relationships in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5052–5059

  44. ISO 13482 (2014) Robots and robotic devices safety requirements for personal care robots

  45. Jeffrey P, Mark G (2003) Navigating the virtual landscape: coordinating the shared use of space. In: Hk K, Benyon D, Munro AJ (eds) Designing information spaces: the social navigation approach. Computer supported cooperative work. Springer, London, pp 105–124

    Chapter  Google Scholar 

  46. Kahn PH, Freier NG, Kanda T, Ishiguro H, Ruckert JH, Severson RL, Kane SK (2008) Design patterns for sociality in human-robot interaction

  47. Kanda T, Shiomi M, Miyashita Z, Ishiguro H, Hagita N (2009) An affective guide robot in a shopping mall. In: ACM/IEEE international conference on Human robot interaction, pp 173–180

  48. Kendon A (2010) Spacing and orientation in co-present interaction. Development of multimodal interfaces: active listening and synchrony, lecture notes in computer science, vol 5967. Springer, Berlin, pp 1–15

  49. Kennedy DP, Glascher J, Tyszka JM, Adolphs R (2009) Personal space regulation by the human amygdala. Nat Neurosci 12(10):1226–1227

    Article  Google Scholar 

  50. Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraint-optimizing method for person acceptable navigation. The 18th IEEE international symposium on robot and human interactive communication

  51. Kitazawa K, Fujiyama T (2010) Pedestrian vision and collision avoidance behavior: investigation of the information process space of pedestrians using an eye tracker. In: Pedestrian and evacuation dynamics 2008, chap 7. Springer, Berlin, pp 95–108

  52. Knowles ES, Kreuser B, Haas S, Hyde M, Schuchart GE (1976) Group size and the extension of social space boundaries. J Personal Soc Psychol 33:647–654

    Article  Google Scholar 

  53. Krueger J (2011) Extended cognition and the space of social interaction. Conscious Cognit 20(3):643–657

    Article  Google Scholar 

  54. Kruse T, Basili P, Glasauer S, Kirsch A (2012) Legible robot navigation in the proximity of moving humans. In: Workshop on advanced robotics and its social Impacts, pp 83–88

  55. Kuderer M, Kretzschmar H, Sprunk C, Burgard W (2012) Feature-based prediction of trajectories for socially compliant navigation. In: Proceedings of robotics: science and systems. Sydney

  56. Kuzuoka H, Suzuki Y, Yamashita J, Yamazaki K (2010) Reconfiguring spatial formation arrangement by robot body orientation. In: Proceedings of the 5th ACM/IEEE international conference on human-robot interaction. IEEE Press, Piscataway, pp 285–292

  57. Lam CP, Chou CT, Chiang KH, Fu LC (2011) Human-centered robot navigation, towards a harmoniously human-robot coexisting environment. IEEE Trans Robot 27(1):99–112

    Article  Google Scholar 

  58. Lamarche F, Donikian S (2004) Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Comput Graph Forum 23:509–518

    Article  Google Scholar 

  59. Lindner F, Eschenbach C (2011) Towards a formalization of social spaces for socially aware robots. In: Proceedings of the 10th international conference on spatial information theory, Springer, Berlin, COSIT’11, pp 283–303

  60. Lloyd DM (2009) The space between us: a neurophilosophical framework for the investigation of human interpersonal space. Neurosci Biobehav Rev 33(3):297–304

    Article  Google Scholar 

  61. Marquardt N, Diaz-Marino R, Boring S, Greenberg S (2011) The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of the 24th annual ACM symposium on user interface software and technology, pp 315–326

  62. Marshall P, Rogers Y, Pantidi N (2011) Using f-formations to analyse spatial patterns of interaction in physical environments. In: Proceedings of the ACM 2011 conference on computer supported cooperative work, pp 445–454

  63. Mead R, Atrash A, Matarić MJ (2011) Proxemic feature recognition for interactive robots: automating metrics from the social sciences. In: Proceedings of the third international conference on social robotics. Springer, Berlin, pp 52–61

  64. Mehu M, Scherer KR (2012) A psycho-ethological approach to social signal processing. Cognit Process 13(2):397–414

    Article  Google Scholar 

  65. Michalowski M, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: 9th IEEE international workshop on advanced motion control, pp 762–767

  66. Miklosi A, Gacsi M (2012) On the utilisation of social animals as a model for social robotics. Front Psychol 3:75

    Article  Google Scholar 

  67. Morales Saiki LY, Satake S, Huq R, Glas D, Kanda T, Hagita N (2012) How do people walk side-by-side?: using a computational model of human behavior for a social robot. In: 7th ACM/IEEE international conference on human-robot interaction, pp 301–308

  68. Morgado N, Muller D, Gentaz E, Palluel-Germain R (2011) Close to me? the influence of affective closeness on space perception. Perception 40:877–879

    Article  Google Scholar 

  69. Muller J, Stachniss C, Arras K, Burgard W (2008) Socially inspired motion planning for mobile robots in populated environments. In: International conference on cognitive systems (CogSys)

  70. Mumm J, Mutlu B (2011) Human-robot proxemics: physical and psychological distancing in human-robot interaction. In: Proceedings of the 6th international conference on Human-robot interaction, pp 331–338

  71. Nakauchi Y, Simmons R (2000) A social robot that stands in line. In: IEEE/RSJ international conference on intelligent robots and systems, vol 1. pp 357–364

  72. Ohki T, Nagatani K, Yoshida K (2010) Collision avoidance method for mobile robot considering motion and personal spaces of evacuees. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1819–1824

  73. Pacchierotti E, Christensen HI, Jensfelt P (2006) Design of an office-guide robot for social interaction studies. In: IEEE/RSJ international conference on intelligent robots and systems

  74. Pacchierotti E, Jensfelt P, Christensen H (2007) Tasking everyday interaction. In: Laugier C, Chatila R (eds) Autonomous navigation in dynamic environments, springer tracts in advanced robotics, vol 35. Springer, Berlin, pp 151–168

    Chapter  Google Scholar 

  75. Pandey A, Alami R (2010) A framework towards a socially aware mobile robot motion in human-centered dynamic environment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5855–5860

  76. Papadakis P, Spalanzani A, Laugier C (2013) Social mapping of human-populated environments by implicit function learning. In: IEEE international conference on intelligent robots and systems

  77. Park S, Trivedi MM (2007) Multi-person interaction and activity analysis: a synergistic track- and body-level analysis framework. Mach Vis Appl 18(3):151–166

    Article  MATH  Google Scholar 

  78. Patterson M, Iizuka Y, Tubbs M, Ansel J, Tsutsumi M, Anson J (2007) Passing encounters east and west: comparing japanese and american pedestrian interactions. J Nonverbal Behav 31:155–166

    Article  Google Scholar 

  79. Ratsamee P, Mae Y, Ohara K, Takubo T, Arai T (2012) Modified social force model with face pose for human collision avoidance. In: Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction. ACM, New York, pp 215–216

  80. Rios-Martinez J, Spalanzani A, Laugier C (2011) Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2014–2019

  81. Rios-Martinez J, Renzaglia A, Spalanzani A, Martinelli A, Laugier C (2012) Navigating between people: a stochastic optimization approach. In: IEEE international conference on robotics and automation, pp 2880–2885

  82. Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans. Strategies for social robots to initiate interaction

  83. Sciutti A, Bisio A, Nori F, Metta G, Fadiga L, Pozzo T, Sandini G (2012) Measuring human-robot interaction through motor resonance. Int J Soc Robot 4:223–234

    Article  Google Scholar 

  84. Sehestedt S, Kodagoda S, Dissanayake G (2010) Robot path planning in a social context. In: IEEE conference on robotics automation and mechatronics, pp 206–211

  85. Sheflen AE (1976) Human territories: how we behave in space and time. Prentice Hall, Englewood Cliffs

    Google Scholar 

  86. Shi C, Shimada M, Kanda T, Ishiguro H, Hagita N (2011) Spatial formation model for initiating conversation. In: Robotics: science and systems

  87. Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23:874–883

    Article  Google Scholar 

  88. Sisbot EA, Marin-Urias LF, Broqure X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence—a planning and control framework for safe and socially acceptable robot motions. Int J Soc Robot 2:329–343

    Article  Google Scholar 

  89. Sommer R (2002) From personal space to cyberspace, serie: Textos de psicologia ambiental, no. 1. brasilia

  90. Spalanzani A, Rios-Martinez J, Laugier C, Lee S (2012) Handbook of intelligent vehicles, chap risk based navigation decisions, Springer, pp 1459–1477

  91. Stein P, Spalanzani A, Laugier C, Santos V (2012) Leader selection and following in dynamic environments. In: 12th international conference on control automation robotics vision, pp 124–129

  92. Svenstrup M, Tranberg S, Andersen H, Bak T (2009) Pose estimation and adaptive robot behaviour for human-robot interaction. In: IEEE international conference on robotics and automation, pp 3571–3576

  93. Svenstrup M, Bak T, Andersen H (2010) Trajectory planning for robots in dynamic human environments. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4293–4298

  94. Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems

  95. Tamura Y, Fukuzawa T, Asama H (2010) Smooth collision avoidance in human-robot coexisting environment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3887–3892

  96. Thompson DE, Aiello JR, Epstein YM (1979) Interpersonal distance preferences. J Nonverbal Behav 4:113–118

    Article  Google Scholar 

  97. Tipaldi GD, Arras KO (2011) Please do not disturb! minimum interference coverage for social robots. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1968–1973

  98. Topp E, Christensen H (2005) Tracking for following and passing persons. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2321–2327

  99. Torta E, Cuijpers R, Juola J, van der Pol D (2011) Design of robust robotic proxemic behaviour. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics, vol 7072., Lecture notes in computer scienceSpringer, Berlin, pp 21–30

    Chapter  Google Scholar 

  100. Turner A, Penn A (2002) Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment. Environ Plan B 29(4):473–490

    Article  Google Scholar 

  101. Vinciarelli A, Pantic M, Bourlard H, Pentland A (2008) Social signal processing: state-of-the-art and future perspectives of an emerging domain. In: Proceedings of the 16th ACM international conference on multimedia, pp 1061–1070

  102. Walters ML, Dautenhahn K, te Boekhorst R, Koay KL, Syrdal DS, Nehaniv CL (2009) An empirical framework for human-robot proxemics. In: Proceedings new frontiers in human-robot interaction.

  103. Wang M, Boring S, Greenberg S (2012) Proxemic peddler: a public advertising display that captures and preserves the attention of a passerby. In: Proceedings of the 2012 international symposium on pervasive displays, pp 3:1–3:6

  104. Yamaoka F, Kanda T, Ishiguro H, Hagita N (2009) Developing a model of robot behavior to identify and appropriately respond to implicit attention-shifting. In: ACM/IEEE international conference on Human robot interaction, pp 133–140

  105. Yamaoka F, Kanda T, Ishiguro H, Hagita N (2010) A model of proximity control for information-presenting robots. IEEE Trans Robot 26(1):187–195

    Article  Google Scholar 

  106. Yamazaki K, Kawashima M, Kuno Y, Akiya N, Burdelski M, Yamazaki A, Kuzuoka H (2007) Prior-to-request and request behaviors within elderly day care: implications for developing service robots for use in multiparty settings. In: European conference on computer-supported cooperative work, pp 61–78

  107. Yanco H, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: IEEE international conference on systems, man and cybernetics, vol 3. pp 2841–2846

  108. Zender H, Jensfelt P, Kruijff GJ (2007) Human- and situation-aware people following. In: 16th IEEE international symposium on robot and human interactive communication, pp 1131–1136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Spalanzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios-Martinez, J., Spalanzani, A. & Laugier, C. From Proxemics Theory to Socially-Aware Navigation: A Survey. Int J of Soc Robotics 7, 137–153 (2015). https://doi.org/10.1007/s12369-014-0251-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-014-0251-1

Keywords

Navigation