Skip to main content

Advertisement

Log in

Breeding for Drought Tolerance in Sugarcane: Indian Perspective

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Drought is a common abiotic disaster in India, affecting the states that are prominent for sugarcane production, viz., Tamil Nadu, Maharashtra, Andhra Pradesh, Bihar, Haryana, Rajasthan, and Uttar Pradesh. As sugarcane is a high water requirement crop with a long life cycle, water deficit conditions adversely affect its growth and production especially during the key water requirement time i.e., the tillering and grand growth phases which in turn, critically affects the sugar content in sugarcane. Sugarcane undergoes a variety of morpho-physiological, biochemical, molecular alterations, adaptations, and reactions to cope up with drought stress. Drought tolerance in sugarcane is bestowed by the traits of having a deep and widespread root system as well as root dispersion and abundance, and leaf characteristics which are evident in drought-tolerant genotypes such as Badila, Co 285, and Co 312. Nearly 40 sugarcane varieties having drought resistance potential have been identified under the All India Coordinated Research Project on Sugarcane in the last two decades. Some clones of Saccharum barberi, Hemja, Khari, Katha, and Ikhri are also recognized for drought tolerance. Additionally, molecular markers and potential genes associated with drought tolerance in sugarcane have also been identified like SCAR (sequence characterized amplified region) markers, Superoxide dismutase, and Indole-3-glycerol phosphate synthase genes. With the transgenic approach, Erianthus arundinaceus Glyoxalase III (EaGlyIII), Arabidopsis Vacuolar Pyrophosphatase (AVP1) and tomato ethylene-responsive factor 1 genes have successfully been identified for developing drought-tolerant transgenic sugarcane in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anonymous. 1987. Annual Report IISR, Lucknow, pp. 43.

  • Anonymous. 1988. Annual Report IISR, Lucknow, pp. 50.

  • Anonymous. 1989. Annual Report IISR, Lucknow, pp. 56.

  • Araus, J.L., G.A. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science 27: 1–36.

    Article  Google Scholar 

  • Bhargava, S., and K. Sawant. 2013. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding 132: 21–32.

    Article  CAS  Google Scholar 

  • Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119–123.

    Article  Google Scholar 

  • Campos, H., A. Cooper, J.E. Habben, G.O. Edmeades, and J.R. Schussler. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research 90: 19–34.

    Article  Google Scholar 

  • Christy, P.M., R.D. Preetha, S. Vasantha, and D. Divya. 2013. Biochemical and molecular analysis of sugarcane genotypes response to salinity and drought. International J Applied Biology and Pharmaceutical Technology 4 (1): 210–218.

    Google Scholar 

  • Devi, K., R. Gomathi, R. Arun Kumar, R. Manimekalai, and A. Selvi. 2018. Field tolerance and recovery potential of sugarcane varieties subjected to drought. Indian Journal of Plant Physiology 23: 271–282.

    Article  CAS  Google Scholar 

  • Devi, K., P.T. Prathima, R. Gomathi, R. Manimekalai, K. Lakshmi, and A. Selvi. 2019. Gene Expression Profiling in Sugarcane Genotypes during Drought Stress and Rehydration. Sugar Tech 21: 717–733.

    Article  CAS  Google Scholar 

  • Dwivedi, R.S. 1988. Annual Report of IISR, Lucknow, pp. 50.

  • Dwivedi, R.S., and K.K. Srivastava. 1993. A scenario of research on physiology and biochemistry of sugarcane. In Sugarcane Research and Development in Subtropics, eds. G.B. Singh, and O.K. Sinha, pp. 143–190. IISR, Lucknow.

  • Dwivedi, R.S., Y. Misra, K.K. Srivastava. 1997. Effect of potassium on EDTA-osmoticum, nitrate reductase activity, and productivity of groundnut-sugarcane intercropping under water deficit conditions. In Plant Nutrition for Sustainable Food Production and Environment. Developments in Plant and Soil Sciences, eds. T. Ando, K. Fujita, T. Mae, H. Matsumoto, S. Mori, J. Sekiya vol 78: pp. 93–94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0047-9_15.

  • Dwivedi, R.S. 2000. Physiology of sugarcane. In Fifty Years of Sugarcane Research in India, eds. H.N. Shahi, A.K. Shrivastava, and O.K. Sinha, pp. 73–110. Indian Institute of Sugarcane Research Lucknow.

  • Gomathi, R., S. Vasantha, G. Hemaprabha, S. Alarmelu, and R.M. Shanthi. 2011. Evaluation of elite sugarcane clones for drought tolerance. Journal of Sugarcane Research 1 (1): 55–62.

    Google Scholar 

  • Gomathi, R., V. Krishnapriya, R. Arunkumar, P. Govindaraj, and Bakshi Ram. 2020. Physiological traits imparting drought stress tolerance to promising sugarcane (Saccharum spp.) clones. Plant Physiology Reports 25: 509–515.

    Article  CAS  Google Scholar 

  • Gomathi, R. and S. Vasantha. 2010. Screening for drought tolerance in sugarcane. In ed. T. Rejula Shanthy, Extension publication no 180. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Gomathi, R., S. Vasantha and R. Arunkumar. 2016. Screening methodologies for drought and salinity tolerance in sugarcane. In Biotechnological and conventional tools for biotic and abiotic stresses management in sugarcane, eds. B. Ram, P. Govindaraj, A. Ramesh Sundar, & A. Bhaskaran, pp. 272–276. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Gomathi, R., P. Govindaraj, R. Bakshi, and K. Ramachandran. 2018. Evaluation of promising sugarcane clones (Saccharum spp.) for drought tolerance. Proceedings of the Sugar Technologists Association of India 76: 112–138.

    Google Scholar 

  • Hemaprabha, G., R. Nagarjan, and S. Alarmelu. 2006. Parental potential of sugarcane clones for drought resistance breeding. Sugar Tech 8 (1): 59–62.

    Article  CAS  Google Scholar 

  • Inman-Bamber, N., and D. Smith. 2005. Water relations in sugarcane and response to water deficits. Field Crop Research 92: 185–202.

    Article  Google Scholar 

  • Iskandar, H.M., R.E. Casu, A.T. Fletcher, S. Schmidt, J. Xu, D.J. Maclean, J.M. Manners, and G.D. Bonnett. 2011. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biology 11: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangpromma, N., S. Thammasirirak, P. Jaisiland, and P. Songsri. 2012. Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Australian Journal of Crop Sciences 6: 1298–1304.

    Google Scholar 

  • Jung, J.H., and F. Altpeter. 2016. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Molecular Biology 92: 131–142. https://doi.org/10.1007/s11103-016-0499-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, N., A. Mishra, P.S. Chauhan, and C.S. Nautiyal. 2011. Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Annals of Applied Biology 159: 372–386.

    Article  CAS  Google Scholar 

  • Kishor, P.B.K., S. Sangam, R.N. Amrutha, P.S. Laxmi, K.R. Naidu, K.R.S.S. Rao, S. Rao, K.J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science 88: 424–438.

    CAS  Google Scholar 

  • Krishnamurthy, M. 1989. Development of subclonal populations in sugarcane and their genetic and field evaluation for commercial use. Ph.D Thesis, University of South Pacific, Fiji Islands, p 400.

  • Kumar, D. 2005. Breeding for drought resistance. In Abiotic stresses: Plant Resistance through Breeding and Molecular Approaches, ed. M. Ashraf and P.J.C. Harris, 145–175. New York, The Haworth: Press.

    Google Scholar 

  • Kumar, V., and M. Jain. 2015. The CRISPR-Cas system for plant genome editing: Advances and opportunities. Journal of Experimental Botany 66: 47–57. https://doi.org/10.1093/jxb/eru429.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, T., M.R. Uzma, Z. Abbas. Khan, and G.M. Ali. 2014. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology 56: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., N. Malik, and R.S. Sengar. 2021. Physio-biochemical insights into sugarcane genotypes under water stress. Journal of Biological Rhythm Research 52 (1): 92–115.

    Article  CAS  Google Scholar 

  • Lal, K.N., and O.N. Mehrotra. 1949. Studies in crop physiology: Cell-size characteristics of sugar-cane varieties in relation to drought resistance. Botany Gaz. 111: 193–210.

    Article  Google Scholar 

  • Lata, C., M. Muthamilarasan, and M. Prasad. 2015. Drought stress responses and signal transduction in plants. In Elucidation of abiotic stress signaling in plants, ed. G.K. Pandey, 195–225. New York: Springer.

    Chapter  Google Scholar 

  • Madhav, T.V., G.S.M. Bindu, M.V. Kumar, and C.S. Naik. 2017. Study on root characteristics of sugarcane genotypes for moisture stress. International Journal of Plant & Soil Science 18 (5): 1–4.

    Article  Google Scholar 

  • Mall, A.K., V. Misra, B.D. Singh, M. Kumar and A.D. Pathak. 2020. Drought tolerance: breeding efforts in sugarcane. In Agronomic Crops, ed. M. Hasanuzzaman, pp. 157–172.

  • McQualter, R.B., and A. Dookun-Saumtally. 2007. Expression profiling of abiotic stress inducible genes in sugarcane. Proceeding of Australian Society of Sugar Cane Technology 29: 878–886.

    Google Scholar 

  • Meena, M.R., N. Murthy, R. Kumar, and M.L. Chhabra. 2013. Genotypic response of sugarcane under induced moisture deficit conditions. Vegetos 26 (1): 229–232.

    Article  Google Scholar 

  • Misra, V., S. Solomon, and M.I. Ansari. 2016. Impact of drought on post-harvest quality of sugarcane crop. Advances in Life Sciences 5 (20): 9496–9505.

    Google Scholar 

  • Misra, V., S. Solomon, A. Hashem, E.F. Abd Allah, A.F. Al-Arjani, A.K. Mall, C.P. Prajapati, and M.I. Ansari. 2020a. Minimization of post-harvest sucrose losses in drought affected sugarcane using chemical formulation. Saudi Journal of Biological Sciences 27 (1): 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Misra, V., S. Solomon, A.K. Mall, C.P. Prajapati, A. Hashem, E.F. Abd Allah, and M.I. Ansari. 2020b. Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi Journal of Biological Sciences 27 (5): 1228–1236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra, J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science 80: 758–763.

    CAS  Google Scholar 

  • Mohanan, M.V., A. Pushpanathan, S.P.T. Sasikumar, D. Selvarajan, A. N. Jayanarayanan, A.K. R., S. Ramalingam, S.N. Karuppasamy, R. Subbiah, B. Ram and A. Chinnaswamy. 2020. Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. Plant Cell Rep 39: 1581–1594.

  • Naidu, K.M., and K.V. Bhagyalakshmi. 1973. Relative turgidity and stomatal movement of sugarcane varieties in relation to drought resistance. Indian Journal of Agriculture Sciences 43 (11): 1016–1018.

    Google Scholar 

  • Naidu, K.M., S. Ramakrishnan, and K.V. Bhagyalakshmi. 1973. Relative turgidity and stomatal movement of sugarcane varieties in relation to their drought resistance. Indian Journal of Agriculture 43 (11): 1016–1018.

    Google Scholar 

  • Nair, N.V. 2011. Sugarcane varietal development programmes in India: An overview. Sugar Tech 13 (4): 275–280.

    Article  CAS  Google Scholar 

  • Narayana, J.M., M. Chakravarthia, Gauri Nerkara, V.M. Manoj, S. Dharshini, N. Subramonian, M.N. Premachandran, R. Arun Kumar, K. Krishna Surendar, G. Hemaprabha, Bakshi Ram, C. Appunu. 2021. Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane. Industrial Crops and Products 159:113035-37.

  • Nawae, W., J.R. Shearman, S. Tangphatsornruang, P. Punpee, T. Yoocha, D. Sangsrakru, C. Naktang, C. Sonthirod, W. Wirojsirasak, K. Ukoskit, K. Sriroth, P. Klomsa-ard, and W. Pootakham. 2020. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. Peer Journal. 8: e9608. https://doi.org/10.7717/peerj.9608.

    Article  CAS  Google Scholar 

  • Nerkar, G., A. Thorat, S. Sheelvantmath, H.B. Kassa and R. Devarumath. 2018. Genetic transformation of sugarcane and field performanace of transgenic sugarcane. In Biotechnologies of Crop Improvement, eds. S.S. Gosal, and S.H. Wani, pp. 207–226.

  • Oz, M.T., A. Altpeter, R. Karan, A. Merotto, and F. Altpeter. 2021. CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Frontiers in Genome Editing. https://doi.org/10.3389/fgeed.2021.673566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parashar, K.S., S.B. Hukkeri, M.N. Sadaphal, and I.L.P. Sharma. 1980. Studies on the effect of Soil water stress and levels of N on spring planted sugarcane. Proc. ISSCT 17: 494–503.

    Google Scholar 

  • Patade, V.Y., and P. Suprasanna. 2010. Short term salt and PEG stresses regulate expression of microRNA, miR159 in sugarcane leaves. Journal of Crop Science and Biotechnology 13: 177–182.

    Article  Google Scholar 

  • Prabu, G., P.G. Kanwar, M.C. Pagariya, and D. Prasad Theertha. 2011. Identification of water deficit stress up regulated genes in sugarcane. Plant Molecular Biology Report 29 (2): 291–304.

    Article  Google Scholar 

  • Priji, P.J., and G. Hemaprabha. 2015. Sugarcane specific drought responsive candidate genes belonging to ABA dependent pathway identified from basic species clones of Saccharum sp. and Erianthus sp. Sugar Tech 17: 130–137.

    Article  CAS  Google Scholar 

  • Rahman, M.A., W. Wu, Y. Yan, and S.A. Bhuiyan. 2021. Overexpression of TERF1 in sugarcane improves tolerance to drought stress. Crop and Pasture Science 72: 268–279.

    Article  CAS  Google Scholar 

  • Ramanathan, S. and R. Durai. 2003. Sugarcane cultivation problems and prospects. Agenda Notes-35th Meeting of Sugarcane Research and Development workers of Tamil Nadu. Sep'8–9 (2003) pp. 8–111.

  • Ramesh, P., and M. Mahadevaswamy. 2008. Effect of formative phase drought on different classes of shoots, shoot mortality, cane attributes, yield and quality of four sugarcane cultivars. Journal of Agronomy and Crop Science 185 (4): 249–258.

    Article  Google Scholar 

  • Rao, J.T. 1951. Xeromorphic adaptations in sugarcane for resistance to drought. Proceedings of International Society of Sugar Cane Technology 7: 82–89.

    Google Scholar 

  • Rao, K.C., and S. Asokan. 1978. Studies on free proline association with drought resistance in sugarcane. Sugar Journal 40 (8): 23–24.

    Google Scholar 

  • Righetto, V.R., P. Lakshmanan. Gonçalves, and M. Menossi. 2017. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontiers in Plant Science 8: 1077–1095.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanghera, G.S., and A. Kumar. 2018. Recent perspectives towards enhancing drought tolerance in sugarcane. J. Plant Science Research 34 (1): 22–34.

    Article  Google Scholar 

  • Seki, M., A. Kamei, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2003. Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Current Opinion in Biotechnology 14: 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Selvi, A., K. Devi, R. Manimekalai and P.T. Prathima. 2020. Comparative analysis of drought-responsive transcriptomes of sugarcane genotypes with differential tolerance to drought. 3 Biotech 10, Article number: 236.

  • Shrivastava, A.K., A.K. Srivastava, and S. Solomon. 2011. Sustaining sugarcane productivity under depleting water resources. Current Science 101 (6): 748–754.

    Google Scholar 

  • Shrivastava, A.K. and M.K. Srivastava 2006. Abiotic stresses affecting sugarcane: Sustaining productivity, 1–322 International Book distributing Co., Lucknow. India.

  • Shrivastava, A.K., T.K. Srivastava, A.K. Srivastava, V. Misra, S. Srivastava, V.K. Singh and S.P. Shukla. 2016. Climate change-induced abiotic stresses affecting sugarcane and their mitigation. ICAR-Indian Institute of Sugarcane Research, Lucknow, Pp. 108.

  • Simon, S. and G. Hemaprabha. 2010. Identification of two new drought specific candidate genes in sugarcane (Saccharum sp.) Electronic Journal of Plant Breeding 1(4): 1164–1170.

  • Singh, S., and P.N.G. Rao. 1987. Varietal differences in growth characteristics in sugarcane. Journal of Agricultural Science 108: 245–247.

    Article  Google Scholar 

  • Singh, S., and M.S. Reddy. 1980. Growth, yields and juice quality performance of sugarcane varieties under different soil moisture regimes in relation to drought resistance. Proceedings of International Society for Sugarcane Technologists 27: 541–555.

    Google Scholar 

  • Sreenivasan, T.V., V.A. Amalraj and A.W. Jebadha. 2001. Catalogue on Sugarcane Genetic Resources IV. Erianthus species. Sugarcane Breeding Institute, Coimbatore, India, pp. 98.

  • Srinivasan, T.V. 2004. Improving indigenous sugarcane of India. Sugar Tech 6 (3): 107–111.

    Article  Google Scholar 

  • Srivastava, S., and R. Sunkar. 2013. Emerging role of microRNA in drought stress tolerance in the biofuel, bioenergy crop sugarcane. Journal of Biotechnology and Biomaterials 3 (3): 56.

    Google Scholar 

  • Srivastava, M.K., Li. Chang-Ning, and Li. Yang-Rui. 2012. Development of sequence characterized amplified region (SCAR) marker for identifying drought tolerant sugarcane genotypes. AJCS 6 (4): 763–767.

    CAS  Google Scholar 

  • Swapna, S., and G. Hemaprabha. 2012. Sugarcane specific drought responsive candidate genes identified through differential expression in resistant and susceptible genotypes of sugarcane (Saccharum sp.). International Sugar Journal 114: 731–737.

    Google Scholar 

  • Thiebaut, F., C. Grativol, M. Carnavale-Bottino, C.A. Rojas, L.O.S. Tanurdzic, L. Farinelli, R.A. Martienssen, A.S. Hermely, and P.C.G. Ferreira. 2012. Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics 13: 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano, K., Y. Kurihara, M. Seki, and K. Shinozaki. 2010. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology 13 (2): 132–138.

    Article  CAS  PubMed  Google Scholar 

  • Vasabtha, S., S. Alarmelu, G. Hemaprabha, and R.M. Shanthi. 2005. Evaluation of promising sugarcane genotypes for drought. Sugar Tech 7 (2 & 3): 82–83.

    Article  Google Scholar 

  • Venkataramana, S., P.N. Gururaja Rao, and K.M. Naidu. 1986. The effects of water stress during the formative phase on stomatal resistance and leaf water potential and its relationship with yield in ten sugarcane varieties. Field Crops Research Journal 13: 345–353.

    Article  Google Scholar 

  • Venkataramana, S. 2003. Varietal response to moisture stress in sugarcane. Agenda Notes-35th Meeting of sugarcane Research and Development workers of Tamil Nadu. Sep'8–9, (2003) pp. 20–24.

  • Verbruggen, N., and C. Hermans. 2008. Proline accumulation in plants: A review. Amino Acids 35: 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, P.V., P. Suprasanna, K.U. Gopalrao, and B.V. Anant. 2006. Molecular profiling using RAPD technique of salt and drought tolerant regenerants of sugarcane. Sugar Tech 8: 63–68.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review Plant Biology 57: 781–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mall, A.K., Misra, V., Pathak, A.D. et al. Breeding for Drought Tolerance in Sugarcane: Indian Perspective. Sugar Tech 24, 1625–1635 (2022). https://doi.org/10.1007/s12355-021-01094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01094-z

Keywords

Navigation