Skip to main content
Log in

Identification of Water Deficit Stress Upregulated Genes in Sugarcane

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Sugarcane represents an important renewable source among biofuel crops with high capability to assimilate carbon among the C4 plants. Limited availability of freshwater renders this crop uneconomical, warranting the necessity for the development of varieties with higher water use efficiency and tolerant to water deficiency stress. Sugarcane variety cv. Co740 was subjected to varied levels of water deficiency stress to isolate transcripts differentially expressed to the imposed stress. The leaf relative water content was used as a measure to estimate the stress response. PCR-based cDNA suppression subtractive hybridization technique was applied to construct forward subtracted library for differentially expressed genes under stress. Dot blot-selected 158 clones showing elevated response were sequenced, of which 62% resembled similarity with known functional genes, 12% with hypothetical proteins of plant origin, while 26% represented new unknown sequences. Annotation of these differentially expressed sequence tags (ESTs) in the moderately water deficit stress-tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Further, semi-quantitative reverse transcriptase PCR carried out for five genes projected the involvement of these ESTs in stress alleviation/tolerance. Results from this study may help in targeting useful genes for improving drought tolerance in sugarcane and other grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ESTs:

Expressed sequence tags

SSH:

Suppression subtractive hybridization

sqRT-PCR:

Semi-quantitative reverse transcriptase PCR

RWC:

Relative water content

References

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Baisakh N, Subudhi PK, Parami NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst roles in stress, senescence and signal transduction in plants. Cur Sci 89:1113–1121

    CAS  Google Scholar 

  • Boss WF, Davis AJ, Im YJ, Galvão RM, Perera IY (2006) Phosphoinositide metabolism: towards an understanding of subcellular signaling. Subcell Biochem 39:181–205

    Article  PubMed  Google Scholar 

  • Brands A, Ho TH (2002) Function of a plant stress-induced gene, HVA22. Synthetic enhancement screen with its yeast homolog reveals its role in vesicular traffic. Plant Physiol 130:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Breusegem FV, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    Article  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147

    Article  Google Scholar 

  • Chatterjee AD, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    Article  Google Scholar 

  • Das S, Hussain A, Bock C, Keller WA, Georges F (2005) Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1)—comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus. Planta 220:777–784

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Downes CP, Gray A, Lucocq JM (2005) Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol 15:259–268

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–87

    Article  PubMed  CAS  Google Scholar 

  • Fouquet R, Leon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541–1550. doi:10.1007/s00299-008-0566-1

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maurino S, Monreal J, Alvarez R, Vidal J, Echevarría C (2003) Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta 216:648–655

    PubMed  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Guo WJ, Ho DTH (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147:1710–1722

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Raghuvanshi S, Gupta A, Saini N, Gaur A, Khan MS, Gupta RS, Singh J, Duttamajumder SK, Srivastava S, Suman A, Khurana JP, Kapur R, Tyagi AK (2009) The water-deficit stress- and red-rot-related genes in sugarcane. Funct Integr Genomics 10(2):207–214. doi:10.1007/s10142-009-0144-9

    Article  PubMed  Google Scholar 

  • Gurskaya NG, Diatchenko L, Chenchik A, Siebert PD, Khaspekov GL, Lukyanov KA, Vagner LL, Ermolaeva OD, Lukyanov SA, Sverdlov ED (1996) Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12- myristate 13-acetate. Anal Biochem 240:90–97

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Inze D, Van Montague M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  CAS  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24. doi:10.1186/1471-2229-10-24

    Article  PubMed  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Bailey-Serres J (2002) Regulation of translational initiation in plants. Cur Opinion Plant Biol 5:460–465

    Article  CAS  Google Scholar 

  • Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, Mestril R, Patterson C, Querfurth HW (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16:848–864

    Article  PubMed  CAS  Google Scholar 

  • Kurama EE, Fenille RC, Rosa VE, Rosa DD, Ulian EC (2002) Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane. Mol Plant Pathol 3:251–259

    Article  PubMed  CAS  Google Scholar 

  • Lee BR, Jung WJ, Lee BH, Avice JC, Ourry A, Kim TH (2008) Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiol Plant 132:329–337

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Cur Genet 51:343–365

    Article  CAS  Google Scholar 

  • Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM (2008) Sugarcane functional genomics: gene discovery for agronomic trait development. Int J Plant Genomics 2008:1–11. doi:10.1155/2008/458732

    Article  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Naik RM, Kadam BS, Pandhare RA, Pawar SM, Patil RC, Bhoi PG (2002) Inheritance of proline accumulation and in vivo nitrate reductase activity in sugarcane leaves under water stress. Indian Sugar 52:427–429

    Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FT, De Rosa VE, Jr MM, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FTS, Schlögl PS, Camargo SR, Fernandez JH, De Rosa VE, Jr PP, Arruda P (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169:93–106

    Article  CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Paul W, Schenk PW, Snaar-Jagalska BE (1999) Signal perception and transduction: the role of protein kinases. Biochem Biophys Acta 1449:1–24

    Article  Google Scholar 

  • Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU, Pestova TV (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J 27:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  PubMed  CAS  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama MY Jr, Vêncio RZ, Vicentini R, Duarte RD, de Rosa VE, Jr VF, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, Galbiatti JA, Almeida RS, Figueira AV, Hemerly AS, Silva-Filho MC, Menossi M, Souza GM (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 13:8–71

    Google Scholar 

  • Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10

    CAS  Google Scholar 

  • Rodriguez M, Canales E, Borroto CJ, Carmona E, Lopez J, Pujol M, Borras-Hidalgo O (2006) Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. J Plant Physiol 163:577–584

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410. doi:10.1007/s00299-008-0556-3

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2007) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Shen Q, Chen CN, Brands A, Pan SM, Ho TH (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45:327–340

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Sebestyen Z, Galiba G (2007) Deletions of chromosome 5A affect free amino acid and polyamine levels in wheat subjected to salt stress. Environ Exp Bot 60:193–201

    Article  CAS  Google Scholar 

  • Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crops Res 98:91–97

    Article  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  PubMed  CAS  Google Scholar 

  • Szick-Miranda K, Jayacharan S, Tam A, Werner-Fraczek J, Williams AJ, Bailey-Serres J (2003) Evaluation of translational control mechanisms in response to oxygen deprivation in maize. Russ J Plant Physiol 50:774–786

    Article  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Yamamoto T, Yamada T, Sakuratani T, Nawata E, Noichana C, Sributta A, Higuchi H (2004) Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand. Agril Water Managt 67:133–143

    Article  Google Scholar 

  • Watkinson JI, Hendricks L, Sioson AA, Heath LS, Bohnert HJ, Grene R (2008) Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol Biochem 46:34–45

    Article  PubMed  CAS  Google Scholar 

  • Watt DA (2003) Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot 54:1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142:193–206

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55:807–823

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director General and Dr. V.S. Ghule, VSI, India for funding the work and Dr. S. Anandhan, Scientist ‘C’, DARL, Defense Research and Developmental Organization, Haldwani, India for his valuable suggestions during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Govindrao Kawar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabu, G., Kawar, P.G., Pagariya, M.C. et al. Identification of Water Deficit Stress Upregulated Genes in Sugarcane. Plant Mol Biol Rep 29, 291–304 (2011). https://doi.org/10.1007/s11105-010-0230-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0230-0

Keywords

Navigation