Skip to main content
Log in

Sugarcane is Less Impacted by Water Deficit using a Mixture of Five Diazotrophs Bacteria

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The study was conducted to evaluate the potential of a mixture of five diazotrophic bacteria applied as an inoculant to mitigate the negative effects of the water deficit on the physiological and on the biometrics aspects of the growth of five varieties of sugarcane subjected to water stress. The RB867515, RB966928, RB106814, RB106818, and RB106819 varieties were used for study. These were treated with and without the use of a mixture of five strains of diazotrophic bacteria, under adequate irrigation conditions and under total water restriction. Each plot was represented by a sugarcane plant, in four replicates; via a randomized blocks design, in a split plot scheme. Compared to the uninoculated control, inoculation resulted in an increase in net carbon assimilation (15%), chlorophyll content (30%), and osmotic potential (28%) in the plants, besides of a dry mass yield increase. In addition, inoculated plants were able to maintain higher stomatal conductance and relative water content in the leaf, whereas decreasing 6% leaf transpiration rate of plants. The presence of these bacteria mixture improves the morpho-physiological characteristics, helping to mitigate the effects of water deficit in sugarcane plants, regardless of the used sugarcane varieties. Results also highlight that the plant restored an adequate growth performance by maintaining its gas exchange parameters integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldani, J.I., V.L.D. Baldani, L. Seldin, and J. Döbereiner. 1986. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic and Evolutionary Bacteriology 36: 86–93. https://doi.org/10.1099/00207713-36-1-86.

    Article  CAS  Google Scholar 

  • Baldani, J.I., B. Pot, G. Kirchhof, E. Falsen, V.L.D. Baldani, F.L. Olivares, B. Hoste, K. Kersters, A. Hartmann, M. Gillis, and J. Döbereiner. 1996. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates EF group 1 as Herbaspirillum species 3. International Journal of Systematic and Evolutionary Bacteriology 46: 802–810. https://doi.org/10.1099/00207713-46-3-802.

    Article  CAS  Google Scholar 

  • Baldani, I., S. Videira, V.M. Reis, and L.H. Boddey. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil 384: 413–431. https://doi.org/10.1007/s11104-014-2186-6.

    Article  CAS  Google Scholar 

  • Blackmer, T.M., and J.S. Schepers. 1994. Techniques for monitoring crop nitrogen status in corn. Communications in Soil Science and Plant Analysis 25: 1791–1800. https://doi.org/10.1080/00103629409369153.

    Article  Google Scholar 

  • Braga Junior, R.L.C., M.G.A. Landell, D.N. Silva, M.P. Bidoia, T.N. Silva, J.R. Tomzinho Junior, and V.H.P. Silva. 2018. Censo varietal IAC no brasil - safra 2016/17 e na região centro-sul – safra 2017/18. Revista Canavieiros 140: 40–57.

    Google Scholar 

  • Bray, E.A. 1997. Plant responses to water deficit. Trends in Plant Science 2: 48–54. https://doi.org/10.1016/S1360-1385(97)82562-9.

    Article  Google Scholar 

  • Cambraia, J. 2005. Aspectos bioquímicos, celulares e fisiológicos dos estresses nutricionais em plantas. In: Nogueira, R.J.M.C., E.L. Araújo, L.G. Willadino, and U.M.T. Cavalcante. (eds.). Estresses ambientais: danos e benefícios em plantas. Recife: UFRPE 2: 95–104.

  • Cavalcante, V., and J. Döbereiner. 1988. A new acid-tolerant nitrogen-fixing bacterium isolated from sugarcane. Plant and Soil 108: 23–31. https://doi.org/10.1007/BF02370096.

    Article  Google Scholar 

  • Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology 30: 239–264. https://doi.org/10.1071/FP02076.

    Article  CAS  PubMed  Google Scholar 

  • Chaves, V.A., S.G. Santos, N. Schultz, W. Pereira, S.J. Sousa, R.C. Monteiro, and V.M. Reis. 2015. Initial development of two sugarcane varieties inoculated with diazotrophic bacteria. Revista Brasileira De Ciência Do Solo 39: 1595–1602. https://doi.org/10.1590/01000683rbcs20151144.

    Article  Google Scholar 

  • CONAB – Companhia Nacional de Abastecimento. 2019. Acompanhamento da safra brasileira de cana-de-açúcar - Safra 2019/20 - Primeiro levantamento, maio de 2019 6(1). https://www.conab.gov.br. Accessed 20 October 2019.

  • da GírioS, L.A., F.L.F. Dias, V.M. Reis, S. Urquiaga, N. Schultz, D. Bolonhezi, and M.A. Mutton. 2015. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuária Brasileira 50 (1): 33–43. https://doi.org/10.1590/S0100-204X2015000100004.

    Article  Google Scholar 

  • Dimkpa, C., T. Weinand, and F. Asch. 2009. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment 32: 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y.C., Y. Kawamitsu, A. Nose, S. Hiyane, S. Murayama, K. Wasano, and Y. Uchida. 1996. Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.). Australian Journal of Plant Physiology 23 (6): 719–726. https://doi.org/10.1071/PP9960719.

    Article  CAS  Google Scholar 

  • FAOSTAT. 2016. Food and agricultural commodities production. http://faostat.fao.org/DesktopDefault.aspx?PageID=339&lang=en. Accessed 8 December 2019.

  • Farooq, M., A. Wahid, D. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress effects, mechanisms and management. Agronomy for Sustainable Development 29: 185–212. https://doi.org/10.1007/978-90-481-2666-8_12.

    Article  Google Scholar 

  • Ghannoum, O. 2009. C4 photosynthesis and water stress. Annals of Botany 103: 635–644. https://doi.org/10.1093/aob/mcn093.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, E.R., V.M. Ferreira, J.V. Silva, L. Endres, T.P. Barbosa, and W.G. Duarte. 2010. Trocas gasosas e fluorescência da clorofila a em variedades de cana-de-açúcar submetidas à deficiência hídrica. Revista Brasileira De Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662010000400006.

    Article  Google Scholar 

  • Gross, J. A. and Cassol, R. 2015. Índice de anomalia de chuva do estado o Rio Grande do Sul. Ambiência 11 (3): 529–543. https://revistas.unicentro.br/index.php/ambiencia/article/view/3300.

  • Guimarães, T.G., P.C.R. Fontes, P.R.G. Pereira, V.H.V. Alvarez, and P.H. Monnerat. 1999. Teores de clorofila determinados por medidor portátil e sua relação com formas de nitrogênio em folhas de tomateiro cultivado em dois tipos de solo. Bragantia 58 (1): 209–216. https://doi.org/10.1590/S0006-87051999000100020.

    Article  Google Scholar 

  • Han, H.S., and K.D. Lee. 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences 1 (3): 210–215.

    Google Scholar 

  • Hungria, M., R.J. Campo, E.M. Souza, and F.O. Pedrosa. 2010. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil 331: 413–425. https://doi.org/10.1007/s11104-009-0262-0.

    Article  CAS  Google Scholar 

  • Landell, M.G., M.P. Campana, P. Figueiredo, M.A. Xavier, I.A. Anjos, L.L Dinardo-Miranda, M.S. Scarpari, J.C. Garcia, M.A.P. Bidóia, D.N. Silva, J.R. Mendonça, R.A.D. Kanthack, M.F. Campos, S.R. Brancalião, R.H. Petri, and P.E.M. Miguel. 2012. Sistema de multiplicação de de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. Ribeirão Preto: Instituto Agronômico de Campinas. IAC 109. https://www.udop.com.br/ebiblio/pagina/arquivos/2013_sistema_multiplicacao_cana_com_mudas_pre_brotadas.pdf.

  • Lawlor, D.W. 2013. Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany 64: 83–108. https://doi.org/10.1093/jxb/ers326.

    Article  CAS  PubMed  Google Scholar 

  • Lawlor, D.W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25 (2): 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.x.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S.Y., A. Hameed, F.T. Shen, Y.C. Liu, Y.H. Hsu, M. Shahina, W.A. Lai, and C.C. Young. 2014. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense 1989 as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense 1983 as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek 105: 1149–1162. https://doi.org/10.1007/s10482-014-0176-6.

    Article  CAS  PubMed  Google Scholar 

  • Magalhães, F.M., J.L. Baldani, S.M. Souto, J.R. Kuykendall, and J. Döbereiner. 1983. A new acid-tolerant Azospirillum species. Anais Da Academia Brasileira De Ciências 55: 417–430.

    Google Scholar 

  • Mambach, G.L., I.E. Kotowski, F.J.A. Schneider, M.S. Mallmann, E.B. Bonfada, V.O. Portela, E.B. Bonfada, and D.R. Kaiser. 2017. Resposta da inoculação com azospirillum brasilense nas culturas de trigo e de milho safrinha. Revista Scientia Agraria 18 (2): 97–103. https://doi.org/10.5380/rsa.v18i2.51475.

    Article  Google Scholar 

  • Markwell, J., J.C. Osterman, and J.L. Mitchell. 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research 46: 467–472. https://doi.org/10.1007/BF00032301.

    Article  CAS  PubMed  Google Scholar 

  • Matoso, E.S., A.R. Avancini, K.F.K. Maciel, M.C. Alves, E.D.T. Simon, M.T. Silva, N.L. Dias, and S.D.A.E. Silva. 2020. Influência do uso de um mix de bactérias diaztróficas na biometria e no conteúdo de clorofila de plantas de cana-de-açúcar. Brazilian Journal of Development. 6 (2): 7261–7274. https://doi.org/10.34117/bjdv6n2-141.

    Article  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science 7 (9): 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9.

    Article  CAS  Google Scholar 

  • Molinari, H.B.C., C.J. Marur, E. Daros, M.K.F. Campos, J.F.R.P. Carvalho, J.C. Bespalhok Filho, L.F.R. Pereira, and L.G.E. Vieira. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130: 218–229. https://doi.org/10.1111/j.1399-3054.2007.00909.x.

    Article  CAS  Google Scholar 

  • Moutia, J.Y., S. Saumtally, S. Spaepen, and J. Vanderleyden. 2010. Plant growth promotion by Azospirillum sp. in sugarcane. Plant and Soil 337: 233–242. https://doi.org/10.1007/s11104-010-0519-7.

    Article  CAS  Google Scholar 

  • Noctor, G., and C.H. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249.

    Article  CAS  PubMed  Google Scholar 

  • Reis, V.M., J.I. Baldani, and S. Urquiaga. 2009. Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus (BR 11281), Herbaspirillum seropedicae (BR 11335), Herbaspirillum rubrisubalbicans (BR 11504), Azospirillum amazonense (BR 11145) e Burkholderia tropica (BR 11366). Embrapa Agrobiologia.

  • Reis Estrada-de Los Santos, V.M.P., S. Tenorio-Salgado, J. Vogel, M. Stoffels, S. Guyon, P. Mavingui, V.L.D. Baldani, M. Schimid, J.I. Baldani, J. Balandreau, A. Hartmann, and J. Caballero-Mellado. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plantassociated bacterium. International Journal of Systematic and Evolutionary Bacteriology 54: 2155–2162. https://doi.org/10.1099/ijs.0.02879-0.

    Article  CAS  Google Scholar 

  • Robertson, M.J., A.W. Wood, and R.C. Muchow. 1996. Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. Field Crops Research 48: 11–25. https://doi.org/10.1016/0378-4290(96)00041-X.

    Article  Google Scholar 

  • Schultz, N., W. Pereira, V.M. Reis, and S.S. Urquiaga. 2016. Produtividade e diluição isotópica de 15N em cana-de-açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuária Brasileira. 51 (9): 1594–1601.

    Article  Google Scholar 

  • Silveira, J.A.G., R.A. Viégas, I.M.A. Rocha, R.A. Moreira, and J.T.A. Oliveira. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology 160: 115–123. https://doi.org/10.1078/0176-1617-00890.

    Article  CAS  PubMed  Google Scholar 

  • Souza, E.R., M.B.G.S. Freire, K.P.V. Cunha, C.W.A. Nascimento, H.A. Ruiz, and C.M.T. Lins. 2012. Biomass, anatomical change sand osmotic potential in Atriplex numulária L indl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany 82: 20–27. https://doi.org/10.1016/j.envexpbot.2012.03.007.

    Article  CAS  Google Scholar 

  • Taiz, L. and E. Zeiger. 2009. Fisiologia vegetal, 4 ed. Porto Alegre, Artmed 848.

  • Verma, K.K., X.H. Liu, K.C. Wu, R.K. Singh, Q.Q. Song, M.K. Malviya, X.P. Song, P. Singh, C.L. Verma, and Y.R. Li. 2020a. The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. SILICON 12 (6): 1355–1367.

    Article  CAS  Google Scholar 

  • Verma, K.K., X.P. Song, Y. Zeng, D.M. Li, D.J. Guo, V.D. Rajput, G.L. Chen, A. Barakhov, T.M. Minkina, and Y.R. Li. 2020b. Characteristics of leaf stomata and their relationship with photosynthesis in Saccharum officinarum under drought and silicon application. ACS Omega 5 (37): 24145–24153.

    Article  CAS  Google Scholar 

  • Vieira, G.H.S., E.C. Mantovani, G.C. Sediyama, and F.T. Delazari. 2014. Morpho-physiological indicators of water stress on sugarcane as a function of irrigation depths. Bioscience Journal 30 (3): 65–75.

    Google Scholar 

  • Welbaum, G.E., and F.C. Meinzer. 1990. Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiology 93: 1147–1153. https://doi.org/10.1104/pp.93.3.1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Schiavon Matoso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoso, E.S., Avancini, A.R., dos Anjos e Silva, S.D. et al. Sugarcane is Less Impacted by Water Deficit using a Mixture of Five Diazotrophs Bacteria. Sugar Tech 23, 1284–1294 (2021). https://doi.org/10.1007/s12355-021-01021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01021-2

Keywords

Navigation